| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfpsssmf.1 |  |-  S = dom vol | 
						
							| 2 |  | elinel1 |  |-  ( f e. ( MblFn i^i ( RR ^pm RR ) ) -> f e. MblFn ) | 
						
							| 3 |  | elinel2 |  |-  ( f e. ( MblFn i^i ( RR ^pm RR ) ) -> f e. ( RR ^pm RR ) ) | 
						
							| 4 |  | elpmrn |  |-  ( f e. ( RR ^pm RR ) -> ran f C_ RR ) | 
						
							| 5 | 3 4 | syl |  |-  ( f e. ( MblFn i^i ( RR ^pm RR ) ) -> ran f C_ RR ) | 
						
							| 6 | 2 5 1 | mbfresmf |  |-  ( f e. ( MblFn i^i ( RR ^pm RR ) ) -> f e. ( SMblFn ` S ) ) | 
						
							| 7 | 6 | ssriv |  |-  ( MblFn i^i ( RR ^pm RR ) ) C_ ( SMblFn ` S ) | 
						
							| 8 | 1 | nsssmfmbf |  |-  -. ( SMblFn ` S ) C_ MblFn | 
						
							| 9 | 2 | ssriv |  |-  ( MblFn i^i ( RR ^pm RR ) ) C_ MblFn | 
						
							| 10 |  | nsstr |  |-  ( ( -. ( SMblFn ` S ) C_ MblFn /\ ( MblFn i^i ( RR ^pm RR ) ) C_ MblFn ) -> -. ( SMblFn ` S ) C_ ( MblFn i^i ( RR ^pm RR ) ) ) | 
						
							| 11 | 8 9 10 | mp2an |  |-  -. ( SMblFn ` S ) C_ ( MblFn i^i ( RR ^pm RR ) ) | 
						
							| 12 | 7 11 | pm3.2i |  |-  ( ( MblFn i^i ( RR ^pm RR ) ) C_ ( SMblFn ` S ) /\ -. ( SMblFn ` S ) C_ ( MblFn i^i ( RR ^pm RR ) ) ) | 
						
							| 13 |  | dfpss3 |  |-  ( ( MblFn i^i ( RR ^pm RR ) ) C. ( SMblFn ` S ) <-> ( ( MblFn i^i ( RR ^pm RR ) ) C_ ( SMblFn ` S ) /\ -. ( SMblFn ` S ) C_ ( MblFn i^i ( RR ^pm RR ) ) ) ) | 
						
							| 14 | 12 13 | mpbir |  |-  ( MblFn i^i ( RR ^pm RR ) ) C. ( SMblFn ` S ) |