| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mbfpsssmf.1 |
|- S = dom vol |
| 2 |
|
elinel1 |
|- ( f e. ( MblFn i^i ( RR ^pm RR ) ) -> f e. MblFn ) |
| 3 |
|
elinel2 |
|- ( f e. ( MblFn i^i ( RR ^pm RR ) ) -> f e. ( RR ^pm RR ) ) |
| 4 |
|
elpmrn |
|- ( f e. ( RR ^pm RR ) -> ran f C_ RR ) |
| 5 |
3 4
|
syl |
|- ( f e. ( MblFn i^i ( RR ^pm RR ) ) -> ran f C_ RR ) |
| 6 |
2 5 1
|
mbfresmf |
|- ( f e. ( MblFn i^i ( RR ^pm RR ) ) -> f e. ( SMblFn ` S ) ) |
| 7 |
6
|
ssriv |
|- ( MblFn i^i ( RR ^pm RR ) ) C_ ( SMblFn ` S ) |
| 8 |
1
|
nsssmfmbf |
|- -. ( SMblFn ` S ) C_ MblFn |
| 9 |
2
|
ssriv |
|- ( MblFn i^i ( RR ^pm RR ) ) C_ MblFn |
| 10 |
|
nsstr |
|- ( ( -. ( SMblFn ` S ) C_ MblFn /\ ( MblFn i^i ( RR ^pm RR ) ) C_ MblFn ) -> -. ( SMblFn ` S ) C_ ( MblFn i^i ( RR ^pm RR ) ) ) |
| 11 |
8 9 10
|
mp2an |
|- -. ( SMblFn ` S ) C_ ( MblFn i^i ( RR ^pm RR ) ) |
| 12 |
7 11
|
pm3.2i |
|- ( ( MblFn i^i ( RR ^pm RR ) ) C_ ( SMblFn ` S ) /\ -. ( SMblFn ` S ) C_ ( MblFn i^i ( RR ^pm RR ) ) ) |
| 13 |
|
dfpss3 |
|- ( ( MblFn i^i ( RR ^pm RR ) ) C. ( SMblFn ` S ) <-> ( ( MblFn i^i ( RR ^pm RR ) ) C_ ( SMblFn ` S ) /\ -. ( SMblFn ` S ) C_ ( MblFn i^i ( RR ^pm RR ) ) ) ) |
| 14 |
12 13
|
mpbir |
|- ( MblFn i^i ( RR ^pm RR ) ) C. ( SMblFn ` S ) |