| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfpimgtxrmptf.x |  |-  F/ x ph | 
						
							| 2 |  | smfpimgtxrmptf.1 |  |-  F/_ x A | 
						
							| 3 |  | smfpimgtxrmptf.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 4 |  | smfpimgtxrmptf.b |  |-  ( ( ph /\ x e. A ) -> B e. V ) | 
						
							| 5 |  | smfpimgtxrmptf.f |  |-  ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) | 
						
							| 6 |  | smfpimgtxrmptf.l |  |-  ( ph -> L e. RR* ) | 
						
							| 7 |  | nfmpt1 |  |-  F/_ x ( x e. A |-> B ) | 
						
							| 8 | 7 | nfdm |  |-  F/_ x dom ( x e. A |-> B ) | 
						
							| 9 |  | nfcv |  |-  F/_ y dom ( x e. A |-> B ) | 
						
							| 10 |  | nfv |  |-  F/ y L < ( ( x e. A |-> B ) ` x ) | 
						
							| 11 |  | nfcv |  |-  F/_ x L | 
						
							| 12 |  | nfcv |  |-  F/_ x < | 
						
							| 13 |  | nfcv |  |-  F/_ x y | 
						
							| 14 | 7 13 | nffv |  |-  F/_ x ( ( x e. A |-> B ) ` y ) | 
						
							| 15 | 11 12 14 | nfbr |  |-  F/ x L < ( ( x e. A |-> B ) ` y ) | 
						
							| 16 |  | fveq2 |  |-  ( x = y -> ( ( x e. A |-> B ) ` x ) = ( ( x e. A |-> B ) ` y ) ) | 
						
							| 17 | 16 | breq2d |  |-  ( x = y -> ( L < ( ( x e. A |-> B ) ` x ) <-> L < ( ( x e. A |-> B ) ` y ) ) ) | 
						
							| 18 | 8 9 10 15 17 | cbvrabw |  |-  { x e. dom ( x e. A |-> B ) | L < ( ( x e. A |-> B ) ` x ) } = { y e. dom ( x e. A |-> B ) | L < ( ( x e. A |-> B ) ` y ) } | 
						
							| 19 | 18 | a1i |  |-  ( ph -> { x e. dom ( x e. A |-> B ) | L < ( ( x e. A |-> B ) ` x ) } = { y e. dom ( x e. A |-> B ) | L < ( ( x e. A |-> B ) ` y ) } ) | 
						
							| 20 |  | nfcv |  |-  F/_ y ( x e. A |-> B ) | 
						
							| 21 |  | eqid |  |-  dom ( x e. A |-> B ) = dom ( x e. A |-> B ) | 
						
							| 22 | 20 3 5 21 6 | smfpimgtxr |  |-  ( ph -> { y e. dom ( x e. A |-> B ) | L < ( ( x e. A |-> B ) ` y ) } e. ( S |`t dom ( x e. A |-> B ) ) ) | 
						
							| 23 | 19 22 | eqeltrd |  |-  ( ph -> { x e. dom ( x e. A |-> B ) | L < ( ( x e. A |-> B ) ` x ) } e. ( S |`t dom ( x e. A |-> B ) ) ) | 
						
							| 24 |  | eqid |  |-  ( x e. A |-> B ) = ( x e. A |-> B ) | 
						
							| 25 | 1 2 24 4 | dmmptdf2 |  |-  ( ph -> dom ( x e. A |-> B ) = A ) | 
						
							| 26 | 8 2 | rabeqf |  |-  ( dom ( x e. A |-> B ) = A -> { x e. dom ( x e. A |-> B ) | L < ( ( x e. A |-> B ) ` x ) } = { x e. A | L < ( ( x e. A |-> B ) ` x ) } ) | 
						
							| 27 | 25 26 | syl |  |-  ( ph -> { x e. dom ( x e. A |-> B ) | L < ( ( x e. A |-> B ) ` x ) } = { x e. A | L < ( ( x e. A |-> B ) ` x ) } ) | 
						
							| 28 |  | simpr |  |-  ( ( ph /\ x e. A ) -> x e. A ) | 
						
							| 29 | 2 | fvmpt2f |  |-  ( ( x e. A /\ B e. V ) -> ( ( x e. A |-> B ) ` x ) = B ) | 
						
							| 30 | 28 4 29 | syl2anc |  |-  ( ( ph /\ x e. A ) -> ( ( x e. A |-> B ) ` x ) = B ) | 
						
							| 31 | 30 | breq2d |  |-  ( ( ph /\ x e. A ) -> ( L < ( ( x e. A |-> B ) ` x ) <-> L < B ) ) | 
						
							| 32 | 1 31 | rabbida |  |-  ( ph -> { x e. A | L < ( ( x e. A |-> B ) ` x ) } = { x e. A | L < B } ) | 
						
							| 33 |  | eqidd |  |-  ( ph -> { x e. A | L < B } = { x e. A | L < B } ) | 
						
							| 34 | 27 32 33 | 3eqtrrd |  |-  ( ph -> { x e. A | L < B } = { x e. dom ( x e. A |-> B ) | L < ( ( x e. A |-> B ) ` x ) } ) | 
						
							| 35 | 25 | eqcomd |  |-  ( ph -> A = dom ( x e. A |-> B ) ) | 
						
							| 36 | 35 | oveq2d |  |-  ( ph -> ( S |`t A ) = ( S |`t dom ( x e. A |-> B ) ) ) | 
						
							| 37 | 34 36 | eleq12d |  |-  ( ph -> ( { x e. A | L < B } e. ( S |`t A ) <-> { x e. dom ( x e. A |-> B ) | L < ( ( x e. A |-> B ) ` x ) } e. ( S |`t dom ( x e. A |-> B ) ) ) ) | 
						
							| 38 | 23 37 | mpbird |  |-  ( ph -> { x e. A | L < B } e. ( S |`t A ) ) |