Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Basic measure theory
Measurable functions
smfpimgtxrmpt
Metamath Proof Explorer
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of
an open interval unbounded above is in the subspace sigma-algebra
induced by its domain. (Contributed by Glauco Siliprandi , 26-Jun-2021)
(Revised by Glauco Siliprandi , 20-Dec-2024)
Ref
Expression
Hypotheses
smfpimgtxrmpt.x
|- F/ x ph
smfpimgtxrmpt.s
|- ( ph -> S e. SAlg )
smfpimgtxrmpt.b
|- ( ( ph /\ x e. A ) -> B e. V )
smfpimgtxrmpt.f
|- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) )
smfpimgtxrmpt.l
|- ( ph -> L e. RR* )
Assertion
smfpimgtxrmpt
|- ( ph -> { x e. A | L < B } e. ( S |`t A ) )
Proof
Step
Hyp
Ref
Expression
1
smfpimgtxrmpt.x
|- F/ x ph
2
smfpimgtxrmpt.s
|- ( ph -> S e. SAlg )
3
smfpimgtxrmpt.b
|- ( ( ph /\ x e. A ) -> B e. V )
4
smfpimgtxrmpt.f
|- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) )
5
smfpimgtxrmpt.l
|- ( ph -> L e. RR* )
6
nfcv
|- F/_ x A
7
1 6 2 3 4 5
smfpimgtxrmptf
|- ( ph -> { x e. A | L < B } e. ( S |`t A ) )