Metamath Proof Explorer


Theorem smfpimgtxrmpt

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 20-Dec-2024)

Ref Expression
Hypotheses smfpimgtxrmpt.x
|- F/ x ph
smfpimgtxrmpt.s
|- ( ph -> S e. SAlg )
smfpimgtxrmpt.b
|- ( ( ph /\ x e. A ) -> B e. V )
smfpimgtxrmpt.f
|- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) )
smfpimgtxrmpt.l
|- ( ph -> L e. RR* )
Assertion smfpimgtxrmpt
|- ( ph -> { x e. A | L < B } e. ( S |`t A ) )

Proof

Step Hyp Ref Expression
1 smfpimgtxrmpt.x
 |-  F/ x ph
2 smfpimgtxrmpt.s
 |-  ( ph -> S e. SAlg )
3 smfpimgtxrmpt.b
 |-  ( ( ph /\ x e. A ) -> B e. V )
4 smfpimgtxrmpt.f
 |-  ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) )
5 smfpimgtxrmpt.l
 |-  ( ph -> L e. RR* )
6 nfcv
 |-  F/_ x A
7 1 6 2 3 4 5 smfpimgtxrmptf
 |-  ( ph -> { x e. A | L < B } e. ( S |`t A ) )