Metamath Proof Explorer


Theorem smfpimgtxrmpt

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpimgtxrmpt.x x φ
smfpimgtxrmpt.s φ S SAlg
smfpimgtxrmpt.b φ x A B V
smfpimgtxrmpt.f φ x A B SMblFn S
smfpimgtxrmpt.l φ L *
Assertion smfpimgtxrmpt φ x A | L < B S 𝑡 A

Proof

Step Hyp Ref Expression
1 smfpimgtxrmpt.x x φ
2 smfpimgtxrmpt.s φ S SAlg
3 smfpimgtxrmpt.b φ x A B V
4 smfpimgtxrmpt.f φ x A B SMblFn S
5 smfpimgtxrmpt.l φ L *
6 nfmpt1 _ x x A B
7 6 nfdm _ x dom x A B
8 nfcv _ y dom x A B
9 nfv y L < x A B x
10 nfcv _ x L
11 nfcv _ x <
12 nfcv _ x y
13 6 12 nffv _ x x A B y
14 10 11 13 nfbr x L < x A B y
15 fveq2 x = y x A B x = x A B y
16 15 breq2d x = y L < x A B x L < x A B y
17 7 8 9 14 16 cbvrabw x dom x A B | L < x A B x = y dom x A B | L < x A B y
18 17 a1i φ x dom x A B | L < x A B x = y dom x A B | L < x A B y
19 nfcv _ y x A B
20 eqid dom x A B = dom x A B
21 19 2 4 20 5 smfpimgtxr φ y dom x A B | L < x A B y S 𝑡 dom x A B
22 18 21 eqeltrd φ x dom x A B | L < x A B x S 𝑡 dom x A B
23 eqid x A B = x A B
24 1 23 3 dmmptdf φ dom x A B = A
25 nfcv _ x A
26 7 25 rabeqf dom x A B = A x dom x A B | L < x A B x = x A | L < x A B x
27 24 26 syl φ x dom x A B | L < x A B x = x A | L < x A B x
28 23 a1i φ x A B = x A B
29 28 3 fvmpt2d φ x A x A B x = B
30 29 breq2d φ x A L < x A B x L < B
31 1 30 rabbida φ x A | L < x A B x = x A | L < B
32 eqidd φ x A | L < B = x A | L < B
33 27 31 32 3eqtrrd φ x A | L < B = x dom x A B | L < x A B x
34 24 eqcomd φ A = dom x A B
35 34 oveq2d φ S 𝑡 A = S 𝑡 dom x A B
36 33 35 eleq12d φ x A | L < B S 𝑡 A x dom x A B | L < x A B x S 𝑡 dom x A B
37 22 36 mpbird φ x A | L < B S 𝑡 A