Metamath Proof Explorer


Theorem smfpimgtxrmpt

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 20-Dec-2024)

Ref Expression
Hypotheses smfpimgtxrmpt.x x φ
smfpimgtxrmpt.s φ S SAlg
smfpimgtxrmpt.b φ x A B V
smfpimgtxrmpt.f φ x A B SMblFn S
smfpimgtxrmpt.l φ L *
Assertion smfpimgtxrmpt φ x A | L < B S 𝑡 A

Proof

Step Hyp Ref Expression
1 smfpimgtxrmpt.x x φ
2 smfpimgtxrmpt.s φ S SAlg
3 smfpimgtxrmpt.b φ x A B V
4 smfpimgtxrmpt.f φ x A B SMblFn S
5 smfpimgtxrmpt.l φ L *
6 nfcv _ x A
7 1 6 2 3 4 5 smfpimgtxrmptf φ x A | L < B S 𝑡 A