Metamath Proof Explorer


Theorem smfpimgtxrmpt

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 20-Dec-2024)

Ref Expression
Hypotheses smfpimgtxrmpt.x xφ
smfpimgtxrmpt.s φSSAlg
smfpimgtxrmpt.b φxABV
smfpimgtxrmpt.f φxABSMblFnS
smfpimgtxrmpt.l φL*
Assertion smfpimgtxrmpt φxA|L<BS𝑡A

Proof

Step Hyp Ref Expression
1 smfpimgtxrmpt.x xφ
2 smfpimgtxrmpt.s φSSAlg
3 smfpimgtxrmpt.b φxABV
4 smfpimgtxrmpt.f φxABSMblFnS
5 smfpimgtxrmpt.l φL*
6 nfcv _xA
7 1 6 2 3 4 5 smfpimgtxrmptf φxA|L<BS𝑡A