Step |
Hyp |
Ref |
Expression |
1 |
|
smfpimgtxrmpt.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
smfpimgtxrmpt.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
3 |
|
smfpimgtxrmpt.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
4 |
|
smfpimgtxrmpt.f |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
5 |
|
smfpimgtxrmpt.l |
⊢ ( 𝜑 → 𝐿 ∈ ℝ* ) |
6 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
7 |
6
|
nfdm |
⊢ Ⅎ 𝑥 dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
8 |
|
nfcv |
⊢ Ⅎ 𝑦 dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
9 |
|
nfv |
⊢ Ⅎ 𝑦 𝐿 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) |
10 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐿 |
11 |
|
nfcv |
⊢ Ⅎ 𝑥 < |
12 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
13 |
6 12
|
nffv |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) |
14 |
10 11 13
|
nfbr |
⊢ Ⅎ 𝑥 𝐿 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) |
15 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) |
16 |
15
|
breq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐿 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ 𝐿 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) ) |
17 |
7 8 9 14 16
|
cbvrabw |
⊢ { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ 𝐿 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) } = { 𝑦 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ 𝐿 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) } |
18 |
17
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ 𝐿 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) } = { 𝑦 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ 𝐿 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) } ) |
19 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
20 |
|
eqid |
⊢ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
21 |
19 2 4 20 5
|
smfpimgtxr |
⊢ ( 𝜑 → { 𝑦 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ 𝐿 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) } ∈ ( 𝑆 ↾t dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) |
22 |
18 21
|
eqeltrd |
⊢ ( 𝜑 → { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ 𝐿 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) } ∈ ( 𝑆 ↾t dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) |
23 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
24 |
1 23 3
|
dmmptdf |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
25 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
26 |
7 25
|
rabeqf |
⊢ ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 → { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ 𝐿 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝐴 ∣ 𝐿 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) } ) |
27 |
24 26
|
syl |
⊢ ( 𝜑 → { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ 𝐿 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝐴 ∣ 𝐿 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) } ) |
28 |
23
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
29 |
28 3
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
30 |
29
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐿 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ↔ 𝐿 < 𝐵 ) ) |
31 |
1 30
|
rabbida |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐿 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) } = { 𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵 } ) |
32 |
|
eqidd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵 } = { 𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵 } ) |
33 |
27 31 32
|
3eqtrrd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵 } = { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ 𝐿 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) } ) |
34 |
24
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
35 |
34
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 ↾t 𝐴 ) = ( 𝑆 ↾t dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) |
36 |
33 35
|
eleq12d |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵 } ∈ ( 𝑆 ↾t 𝐴 ) ↔ { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ 𝐿 < ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) } ∈ ( 𝑆 ↾t dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) ) |
37 |
22 36
|
mpbird |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐿 < 𝐵 } ∈ ( 𝑆 ↾t 𝐴 ) ) |