Metamath Proof Explorer


Theorem smfpimgtxrmpt

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 20-Dec-2024)

Ref Expression
Hypotheses smfpimgtxrmpt.x 𝑥 𝜑
smfpimgtxrmpt.s ( 𝜑𝑆 ∈ SAlg )
smfpimgtxrmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
smfpimgtxrmpt.f ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )
smfpimgtxrmpt.l ( 𝜑𝐿 ∈ ℝ* )
Assertion smfpimgtxrmpt ( 𝜑 → { 𝑥𝐴𝐿 < 𝐵 } ∈ ( 𝑆t 𝐴 ) )

Proof

Step Hyp Ref Expression
1 smfpimgtxrmpt.x 𝑥 𝜑
2 smfpimgtxrmpt.s ( 𝜑𝑆 ∈ SAlg )
3 smfpimgtxrmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
4 smfpimgtxrmpt.f ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )
5 smfpimgtxrmpt.l ( 𝜑𝐿 ∈ ℝ* )
6 nfcv 𝑥 𝐴
7 1 6 2 3 4 5 smfpimgtxrmptf ( 𝜑 → { 𝑥𝐴𝐿 < 𝐵 } ∈ ( 𝑆t 𝐴 ) )