Metamath Proof Explorer


Theorem smfpimioompt

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpimioompt.x
|- F/ x ph
smfpimioompt.s
|- ( ph -> S e. SAlg )
smfpimioompt.a
|- ( ph -> A e. V )
smfpimioompt.b
|- ( ( ph /\ x e. A ) -> B e. W )
smfpimioompt.m
|- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) )
smfpimioompt.l
|- ( ph -> L e. RR* )
smfpimioompt.r
|- ( ph -> R e. RR* )
Assertion smfpimioompt
|- ( ph -> { x e. A | B e. ( L (,) R ) } e. ( S |`t A ) )

Proof

Step Hyp Ref Expression
1 smfpimioompt.x
 |-  F/ x ph
2 smfpimioompt.s
 |-  ( ph -> S e. SAlg )
3 smfpimioompt.a
 |-  ( ph -> A e. V )
4 smfpimioompt.b
 |-  ( ( ph /\ x e. A ) -> B e. W )
5 smfpimioompt.m
 |-  ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) )
6 smfpimioompt.l
 |-  ( ph -> L e. RR* )
7 smfpimioompt.r
 |-  ( ph -> R e. RR* )
8 eqid
 |-  dom ( x e. A |-> B ) = dom ( x e. A |-> B )
9 2 5 8 smff
 |-  ( ph -> ( x e. A |-> B ) : dom ( x e. A |-> B ) --> RR )
10 eqid
 |-  ( x e. A |-> B ) = ( x e. A |-> B )
11 1 10 4 dmmptdf
 |-  ( ph -> dom ( x e. A |-> B ) = A )
12 11 feq2d
 |-  ( ph -> ( ( x e. A |-> B ) : dom ( x e. A |-> B ) --> RR <-> ( x e. A |-> B ) : A --> RR ) )
13 9 12 mpbid
 |-  ( ph -> ( x e. A |-> B ) : A --> RR )
14 13 fvmptelrn
 |-  ( ( ph /\ x e. A ) -> B e. RR )
15 14 rexrd
 |-  ( ( ph /\ x e. A ) -> B e. RR* )
16 1 6 7 15 pimiooltgt
 |-  ( ph -> { x e. A | B e. ( L (,) R ) } = ( { x e. A | B < R } i^i { x e. A | L < B } ) )
17 eqid
 |-  ( S |`t A ) = ( S |`t A )
18 2 3 17 subsalsal
 |-  ( ph -> ( S |`t A ) e. SAlg )
19 1 2 4 5 7 smfpimltxrmpt
 |-  ( ph -> { x e. A | B < R } e. ( S |`t A ) )
20 1 2 4 5 6 smfpimgtxrmpt
 |-  ( ph -> { x e. A | L < B } e. ( S |`t A ) )
21 18 19 20 salincld
 |-  ( ph -> ( { x e. A | B < R } i^i { x e. A | L < B } ) e. ( S |`t A ) )
22 16 21 eqeltrd
 |-  ( ph -> { x e. A | B e. ( L (,) R ) } e. ( S |`t A ) )