Step |
Hyp |
Ref |
Expression |
1 |
|
smfpimioompt.x |
|- F/ x ph |
2 |
|
smfpimioompt.s |
|- ( ph -> S e. SAlg ) |
3 |
|
smfpimioompt.a |
|- ( ph -> A e. V ) |
4 |
|
smfpimioompt.b |
|- ( ( ph /\ x e. A ) -> B e. W ) |
5 |
|
smfpimioompt.m |
|- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) |
6 |
|
smfpimioompt.l |
|- ( ph -> L e. RR* ) |
7 |
|
smfpimioompt.r |
|- ( ph -> R e. RR* ) |
8 |
|
eqid |
|- dom ( x e. A |-> B ) = dom ( x e. A |-> B ) |
9 |
2 5 8
|
smff |
|- ( ph -> ( x e. A |-> B ) : dom ( x e. A |-> B ) --> RR ) |
10 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
11 |
1 10 4
|
dmmptdf |
|- ( ph -> dom ( x e. A |-> B ) = A ) |
12 |
11
|
feq2d |
|- ( ph -> ( ( x e. A |-> B ) : dom ( x e. A |-> B ) --> RR <-> ( x e. A |-> B ) : A --> RR ) ) |
13 |
9 12
|
mpbid |
|- ( ph -> ( x e. A |-> B ) : A --> RR ) |
14 |
13
|
fvmptelrn |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
15 |
14
|
rexrd |
|- ( ( ph /\ x e. A ) -> B e. RR* ) |
16 |
1 6 7 15
|
pimiooltgt |
|- ( ph -> { x e. A | B e. ( L (,) R ) } = ( { x e. A | B < R } i^i { x e. A | L < B } ) ) |
17 |
|
eqid |
|- ( S |`t A ) = ( S |`t A ) |
18 |
2 3 17
|
subsalsal |
|- ( ph -> ( S |`t A ) e. SAlg ) |
19 |
1 2 4 5 7
|
smfpimltxrmpt |
|- ( ph -> { x e. A | B < R } e. ( S |`t A ) ) |
20 |
1 2 4 5 6
|
smfpimgtxrmpt |
|- ( ph -> { x e. A | L < B } e. ( S |`t A ) ) |
21 |
18 19 20
|
salincld |
|- ( ph -> ( { x e. A | B < R } i^i { x e. A | L < B } ) e. ( S |`t A ) ) |
22 |
16 21
|
eqeltrd |
|- ( ph -> { x e. A | B e. ( L (,) R ) } e. ( S |`t A ) ) |