Step |
Hyp |
Ref |
Expression |
1 |
|
smfpimioo.s |
|- ( ph -> S e. SAlg ) |
2 |
|
smfpimioo.f |
|- ( ph -> F e. ( SMblFn ` S ) ) |
3 |
|
smfpimioo.d |
|- D = dom F |
4 |
|
smfpimioo.a |
|- ( ph -> A e. RR* ) |
5 |
|
smfpimioo.b |
|- ( ph -> B e. RR* ) |
6 |
1 2 3
|
smff |
|- ( ph -> F : D --> RR ) |
7 |
6
|
feqmptd |
|- ( ph -> F = ( x e. D |-> ( F ` x ) ) ) |
8 |
7
|
cnveqd |
|- ( ph -> `' F = `' ( x e. D |-> ( F ` x ) ) ) |
9 |
8
|
imaeq1d |
|- ( ph -> ( `' F " ( A (,) B ) ) = ( `' ( x e. D |-> ( F ` x ) ) " ( A (,) B ) ) ) |
10 |
|
eqid |
|- ( x e. D |-> ( F ` x ) ) = ( x e. D |-> ( F ` x ) ) |
11 |
10
|
mptpreima |
|- ( `' ( x e. D |-> ( F ` x ) ) " ( A (,) B ) ) = { x e. D | ( F ` x ) e. ( A (,) B ) } |
12 |
11
|
a1i |
|- ( ph -> ( `' ( x e. D |-> ( F ` x ) ) " ( A (,) B ) ) = { x e. D | ( F ` x ) e. ( A (,) B ) } ) |
13 |
9 12
|
eqtrd |
|- ( ph -> ( `' F " ( A (,) B ) ) = { x e. D | ( F ` x ) e. ( A (,) B ) } ) |
14 |
|
nfv |
|- F/ x ph |
15 |
1
|
uniexd |
|- ( ph -> U. S e. _V ) |
16 |
1 2 3
|
smfdmss |
|- ( ph -> D C_ U. S ) |
17 |
15 16
|
ssexd |
|- ( ph -> D e. _V ) |
18 |
6
|
ffvelrnda |
|- ( ( ph /\ x e. D ) -> ( F ` x ) e. RR ) |
19 |
7 2
|
eqeltrrd |
|- ( ph -> ( x e. D |-> ( F ` x ) ) e. ( SMblFn ` S ) ) |
20 |
14 1 17 18 19 4 5
|
smfpimioompt |
|- ( ph -> { x e. D | ( F ` x ) e. ( A (,) B ) } e. ( S |`t D ) ) |
21 |
13 20
|
eqeltrd |
|- ( ph -> ( `' F " ( A (,) B ) ) e. ( S |`t D ) ) |