Metamath Proof Explorer


Theorem smfpimioo

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpimioo.s
|- ( ph -> S e. SAlg )
smfpimioo.f
|- ( ph -> F e. ( SMblFn ` S ) )
smfpimioo.d
|- D = dom F
smfpimioo.a
|- ( ph -> A e. RR* )
smfpimioo.b
|- ( ph -> B e. RR* )
Assertion smfpimioo
|- ( ph -> ( `' F " ( A (,) B ) ) e. ( S |`t D ) )

Proof

Step Hyp Ref Expression
1 smfpimioo.s
 |-  ( ph -> S e. SAlg )
2 smfpimioo.f
 |-  ( ph -> F e. ( SMblFn ` S ) )
3 smfpimioo.d
 |-  D = dom F
4 smfpimioo.a
 |-  ( ph -> A e. RR* )
5 smfpimioo.b
 |-  ( ph -> B e. RR* )
6 1 2 3 smff
 |-  ( ph -> F : D --> RR )
7 6 feqmptd
 |-  ( ph -> F = ( x e. D |-> ( F ` x ) ) )
8 7 cnveqd
 |-  ( ph -> `' F = `' ( x e. D |-> ( F ` x ) ) )
9 8 imaeq1d
 |-  ( ph -> ( `' F " ( A (,) B ) ) = ( `' ( x e. D |-> ( F ` x ) ) " ( A (,) B ) ) )
10 eqid
 |-  ( x e. D |-> ( F ` x ) ) = ( x e. D |-> ( F ` x ) )
11 10 mptpreima
 |-  ( `' ( x e. D |-> ( F ` x ) ) " ( A (,) B ) ) = { x e. D | ( F ` x ) e. ( A (,) B ) }
12 11 a1i
 |-  ( ph -> ( `' ( x e. D |-> ( F ` x ) ) " ( A (,) B ) ) = { x e. D | ( F ` x ) e. ( A (,) B ) } )
13 9 12 eqtrd
 |-  ( ph -> ( `' F " ( A (,) B ) ) = { x e. D | ( F ` x ) e. ( A (,) B ) } )
14 nfv
 |-  F/ x ph
15 1 uniexd
 |-  ( ph -> U. S e. _V )
16 1 2 3 smfdmss
 |-  ( ph -> D C_ U. S )
17 15 16 ssexd
 |-  ( ph -> D e. _V )
18 6 ffvelrnda
 |-  ( ( ph /\ x e. D ) -> ( F ` x ) e. RR )
19 7 2 eqeltrrd
 |-  ( ph -> ( x e. D |-> ( F ` x ) ) e. ( SMblFn ` S ) )
20 14 1 17 18 19 4 5 smfpimioompt
 |-  ( ph -> { x e. D | ( F ` x ) e. ( A (,) B ) } e. ( S |`t D ) )
21 13 20 eqeltrd
 |-  ( ph -> ( `' F " ( A (,) B ) ) e. ( S |`t D ) )