Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smfpimioo.s | |
|
smfpimioo.f | |
||
smfpimioo.d | |
||
smfpimioo.a | |
||
smfpimioo.b | |
||
Assertion | smfpimioo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfpimioo.s | |
|
2 | smfpimioo.f | |
|
3 | smfpimioo.d | |
|
4 | smfpimioo.a | |
|
5 | smfpimioo.b | |
|
6 | 1 2 3 | smff | |
7 | 6 | feqmptd | |
8 | 7 | cnveqd | |
9 | 8 | imaeq1d | |
10 | eqid | |
|
11 | 10 | mptpreima | |
12 | 11 | a1i | |
13 | 9 12 | eqtrd | |
14 | nfv | |
|
15 | 1 | uniexd | |
16 | 1 2 3 | smfdmss | |
17 | 15 16 | ssexd | |
18 | 6 | ffvelcdmda | |
19 | 7 2 | eqeltrrd | |
20 | 14 1 17 18 19 4 5 | smfpimioompt | |
21 | 13 20 | eqeltrd | |