Metamath Proof Explorer


Theorem smfpimioo

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpimioo.s φSSAlg
smfpimioo.f φFSMblFnS
smfpimioo.d D=domF
smfpimioo.a φA*
smfpimioo.b φB*
Assertion smfpimioo φF-1ABS𝑡D

Proof

Step Hyp Ref Expression
1 smfpimioo.s φSSAlg
2 smfpimioo.f φFSMblFnS
3 smfpimioo.d D=domF
4 smfpimioo.a φA*
5 smfpimioo.b φB*
6 1 2 3 smff φF:D
7 6 feqmptd φF=xDFx
8 7 cnveqd φF-1=xDFx-1
9 8 imaeq1d φF-1AB=xDFx-1AB
10 eqid xDFx=xDFx
11 10 mptpreima xDFx-1AB=xD|FxAB
12 11 a1i φxDFx-1AB=xD|FxAB
13 9 12 eqtrd φF-1AB=xD|FxAB
14 nfv xφ
15 1 uniexd φSV
16 1 2 3 smfdmss φDS
17 15 16 ssexd φDV
18 6 ffvelcdmda φxDFx
19 7 2 eqeltrrd φxDFxSMblFnS
20 14 1 17 18 19 4 5 smfpimioompt φxD|FxABS𝑡D
21 13 20 eqeltrd φF-1ABS𝑡D