| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfpimioo.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 2 |
|
smfpimioo.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
| 3 |
|
smfpimioo.d |
⊢ 𝐷 = dom 𝐹 |
| 4 |
|
smfpimioo.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 5 |
|
smfpimioo.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 6 |
1 2 3
|
smff |
⊢ ( 𝜑 → 𝐹 : 𝐷 ⟶ ℝ ) |
| 7 |
6
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 8 |
7
|
cnveqd |
⊢ ( 𝜑 → ◡ 𝐹 = ◡ ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 9 |
8
|
imaeq1d |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( 𝐴 (,) 𝐵 ) ) = ( ◡ ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑥 ) ) “ ( 𝐴 (,) 𝐵 ) ) ) |
| 10 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑥 ) ) |
| 11 |
10
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑥 ) ) “ ( 𝐴 (,) 𝐵 ) ) = { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐴 (,) 𝐵 ) } |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → ( ◡ ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑥 ) ) “ ( 𝐴 (,) 𝐵 ) ) = { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐴 (,) 𝐵 ) } ) |
| 13 |
9 12
|
eqtrd |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( 𝐴 (,) 𝐵 ) ) = { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐴 (,) 𝐵 ) } ) |
| 14 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 15 |
1
|
uniexd |
⊢ ( 𝜑 → ∪ 𝑆 ∈ V ) |
| 16 |
1 2 3
|
smfdmss |
⊢ ( 𝜑 → 𝐷 ⊆ ∪ 𝑆 ) |
| 17 |
15 16
|
ssexd |
⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 18 |
6
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 19 |
7 2
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 20 |
14 1 17 18 19 4 5
|
smfpimioompt |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐷 ∣ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐴 (,) 𝐵 ) } ∈ ( 𝑆 ↾t 𝐷 ) ) |
| 21 |
13 20
|
eqeltrd |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( 𝐴 (,) 𝐵 ) ) ∈ ( 𝑆 ↾t 𝐷 ) ) |