Metamath Proof Explorer


Theorem smfpimioo

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpimioo.s ( 𝜑𝑆 ∈ SAlg )
smfpimioo.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
smfpimioo.d 𝐷 = dom 𝐹
smfpimioo.a ( 𝜑𝐴 ∈ ℝ* )
smfpimioo.b ( 𝜑𝐵 ∈ ℝ* )
Assertion smfpimioo ( 𝜑 → ( 𝐹 “ ( 𝐴 (,) 𝐵 ) ) ∈ ( 𝑆t 𝐷 ) )

Proof

Step Hyp Ref Expression
1 smfpimioo.s ( 𝜑𝑆 ∈ SAlg )
2 smfpimioo.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
3 smfpimioo.d 𝐷 = dom 𝐹
4 smfpimioo.a ( 𝜑𝐴 ∈ ℝ* )
5 smfpimioo.b ( 𝜑𝐵 ∈ ℝ* )
6 1 2 3 smff ( 𝜑𝐹 : 𝐷 ⟶ ℝ )
7 6 feqmptd ( 𝜑𝐹 = ( 𝑥𝐷 ↦ ( 𝐹𝑥 ) ) )
8 7 cnveqd ( 𝜑 𝐹 = ( 𝑥𝐷 ↦ ( 𝐹𝑥 ) ) )
9 8 imaeq1d ( 𝜑 → ( 𝐹 “ ( 𝐴 (,) 𝐵 ) ) = ( ( 𝑥𝐷 ↦ ( 𝐹𝑥 ) ) “ ( 𝐴 (,) 𝐵 ) ) )
10 eqid ( 𝑥𝐷 ↦ ( 𝐹𝑥 ) ) = ( 𝑥𝐷 ↦ ( 𝐹𝑥 ) )
11 10 mptpreima ( ( 𝑥𝐷 ↦ ( 𝐹𝑥 ) ) “ ( 𝐴 (,) 𝐵 ) ) = { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ∈ ( 𝐴 (,) 𝐵 ) }
12 11 a1i ( 𝜑 → ( ( 𝑥𝐷 ↦ ( 𝐹𝑥 ) ) “ ( 𝐴 (,) 𝐵 ) ) = { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ∈ ( 𝐴 (,) 𝐵 ) } )
13 9 12 eqtrd ( 𝜑 → ( 𝐹 “ ( 𝐴 (,) 𝐵 ) ) = { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ∈ ( 𝐴 (,) 𝐵 ) } )
14 nfv 𝑥 𝜑
15 1 uniexd ( 𝜑 𝑆 ∈ V )
16 1 2 3 smfdmss ( 𝜑𝐷 𝑆 )
17 15 16 ssexd ( 𝜑𝐷 ∈ V )
18 6 ffvelrnda ( ( 𝜑𝑥𝐷 ) → ( 𝐹𝑥 ) ∈ ℝ )
19 7 2 eqeltrrd ( 𝜑 → ( 𝑥𝐷 ↦ ( 𝐹𝑥 ) ) ∈ ( SMblFn ‘ 𝑆 ) )
20 14 1 17 18 19 4 5 smfpimioompt ( 𝜑 → { 𝑥𝐷 ∣ ( 𝐹𝑥 ) ∈ ( 𝐴 (,) 𝐵 ) } ∈ ( 𝑆t 𝐷 ) )
21 13 20 eqeltrd ( 𝜑 → ( 𝐹 “ ( 𝐴 (,) 𝐵 ) ) ∈ ( 𝑆t 𝐷 ) )