| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfresal.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 2 |  | smfresal.f | ⊢ ( 𝜑  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 3 |  | smfresal.d | ⊢ 𝐷  =  dom  𝐹 | 
						
							| 4 |  | smfresal.t | ⊢ 𝑇  =  { 𝑒  ∈  𝒫  ℝ  ∣  ( ◡ 𝐹  “  𝑒 )  ∈  ( 𝑆  ↾t  𝐷 ) } | 
						
							| 5 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 6 | 5 | pwex | ⊢ 𝒫  ℝ  ∈  V | 
						
							| 7 | 4 6 | rabex2 | ⊢ 𝑇  ∈  V | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  𝑇  ∈  V ) | 
						
							| 9 |  | 0elpw | ⊢ ∅  ∈  𝒫  ℝ | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  ∅  ∈  𝒫  ℝ ) | 
						
							| 11 |  | ima0 | ⊢ ( ◡ 𝐹  “  ∅ )  =  ∅ | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  ∅ )  =  ∅ ) | 
						
							| 13 | 1 | uniexd | ⊢ ( 𝜑  →  ∪  𝑆  ∈  V ) | 
						
							| 14 | 1 2 3 | smfdmss | ⊢ ( 𝜑  →  𝐷  ⊆  ∪  𝑆 ) | 
						
							| 15 | 13 14 | ssexd | ⊢ ( 𝜑  →  𝐷  ∈  V ) | 
						
							| 16 |  | eqid | ⊢ ( 𝑆  ↾t  𝐷 )  =  ( 𝑆  ↾t  𝐷 ) | 
						
							| 17 | 1 15 16 | subsalsal | ⊢ ( 𝜑  →  ( 𝑆  ↾t  𝐷 )  ∈  SAlg ) | 
						
							| 18 | 17 | 0sald | ⊢ ( 𝜑  →  ∅  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 19 | 12 18 | eqeltrd | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  ∅ )  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 20 | 10 19 | jca | ⊢ ( 𝜑  →  ( ∅  ∈  𝒫  ℝ  ∧  ( ◡ 𝐹  “  ∅ )  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 21 |  | imaeq2 | ⊢ ( 𝑒  =  ∅  →  ( ◡ 𝐹  “  𝑒 )  =  ( ◡ 𝐹  “  ∅ ) ) | 
						
							| 22 | 21 | eleq1d | ⊢ ( 𝑒  =  ∅  →  ( ( ◡ 𝐹  “  𝑒 )  ∈  ( 𝑆  ↾t  𝐷 )  ↔  ( ◡ 𝐹  “  ∅ )  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 23 | 22 4 | elrab2 | ⊢ ( ∅  ∈  𝑇  ↔  ( ∅  ∈  𝒫  ℝ  ∧  ( ◡ 𝐹  “  ∅ )  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 24 | 20 23 | sylibr | ⊢ ( 𝜑  →  ∅  ∈  𝑇 ) | 
						
							| 25 |  | eqid | ⊢ ∪  𝑇  =  ∪  𝑇 | 
						
							| 26 |  | nfv | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 27 |  | nfcv | ⊢ Ⅎ 𝑒 𝑦 | 
						
							| 28 |  | nfrab1 | ⊢ Ⅎ 𝑒 { 𝑒  ∈  𝒫  ℝ  ∣  ( ◡ 𝐹  “  𝑒 )  ∈  ( 𝑆  ↾t  𝐷 ) } | 
						
							| 29 | 4 28 | nfcxfr | ⊢ Ⅎ 𝑒 𝑇 | 
						
							| 30 | 27 29 | eluni2f | ⊢ ( 𝑦  ∈  ∪  𝑇  ↔  ∃ 𝑒  ∈  𝑇 𝑦  ∈  𝑒 ) | 
						
							| 31 | 30 | biimpi | ⊢ ( 𝑦  ∈  ∪  𝑇  →  ∃ 𝑒  ∈  𝑇 𝑦  ∈  𝑒 ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ∪  𝑇 )  →  ∃ 𝑒  ∈  𝑇 𝑦  ∈  𝑒 ) | 
						
							| 33 |  | nfv | ⊢ Ⅎ 𝑒 𝜑 | 
						
							| 34 | 29 | nfuni | ⊢ Ⅎ 𝑒 ∪  𝑇 | 
						
							| 35 | 27 34 | nfel | ⊢ Ⅎ 𝑒 𝑦  ∈  ∪  𝑇 | 
						
							| 36 | 33 35 | nfan | ⊢ Ⅎ 𝑒 ( 𝜑  ∧  𝑦  ∈  ∪  𝑇 ) | 
						
							| 37 | 27 | nfel1 | ⊢ Ⅎ 𝑒 𝑦  ∈  ℝ | 
						
							| 38 | 4 | eleq2i | ⊢ ( 𝑒  ∈  𝑇  ↔  𝑒  ∈  { 𝑒  ∈  𝒫  ℝ  ∣  ( ◡ 𝐹  “  𝑒 )  ∈  ( 𝑆  ↾t  𝐷 ) } ) | 
						
							| 39 | 38 | biimpi | ⊢ ( 𝑒  ∈  𝑇  →  𝑒  ∈  { 𝑒  ∈  𝒫  ℝ  ∣  ( ◡ 𝐹  “  𝑒 )  ∈  ( 𝑆  ↾t  𝐷 ) } ) | 
						
							| 40 |  | rabidim1 | ⊢ ( 𝑒  ∈  { 𝑒  ∈  𝒫  ℝ  ∣  ( ◡ 𝐹  “  𝑒 )  ∈  ( 𝑆  ↾t  𝐷 ) }  →  𝑒  ∈  𝒫  ℝ ) | 
						
							| 41 | 39 40 | syl | ⊢ ( 𝑒  ∈  𝑇  →  𝑒  ∈  𝒫  ℝ ) | 
						
							| 42 |  | elpwi | ⊢ ( 𝑒  ∈  𝒫  ℝ  →  𝑒  ⊆  ℝ ) | 
						
							| 43 | 41 42 | syl | ⊢ ( 𝑒  ∈  𝑇  →  𝑒  ⊆  ℝ ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝑒  ∈  𝑇  ∧  𝑦  ∈  𝑒 )  →  𝑒  ⊆  ℝ ) | 
						
							| 45 |  | simpr | ⊢ ( ( 𝑒  ∈  𝑇  ∧  𝑦  ∈  𝑒 )  →  𝑦  ∈  𝑒 ) | 
						
							| 46 | 44 45 | sseldd | ⊢ ( ( 𝑒  ∈  𝑇  ∧  𝑦  ∈  𝑒 )  →  𝑦  ∈  ℝ ) | 
						
							| 47 | 46 | ex | ⊢ ( 𝑒  ∈  𝑇  →  ( 𝑦  ∈  𝑒  →  𝑦  ∈  ℝ ) ) | 
						
							| 48 | 47 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ∪  𝑇 )  →  ( 𝑒  ∈  𝑇  →  ( 𝑦  ∈  𝑒  →  𝑦  ∈  ℝ ) ) ) | 
						
							| 49 | 36 37 48 | rexlimd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ∪  𝑇 )  →  ( ∃ 𝑒  ∈  𝑇 𝑦  ∈  𝑒  →  𝑦  ∈  ℝ ) ) | 
						
							| 50 | 32 49 | mpd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ∪  𝑇 )  →  𝑦  ∈  ℝ ) | 
						
							| 51 | 50 | ex | ⊢ ( 𝜑  →  ( 𝑦  ∈  ∪  𝑇  →  𝑦  ∈  ℝ ) ) | 
						
							| 52 |  | ovexd | ⊢ ( 𝜑  →  ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) )  ∈  V ) | 
						
							| 53 |  | ioossre | ⊢ ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) )  ⊆  ℝ | 
						
							| 54 | 53 | a1i | ⊢ ( 𝜑  →  ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) )  ⊆  ℝ ) | 
						
							| 55 | 52 54 | elpwd | ⊢ ( 𝜑  →  ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) )  ∈  𝒫  ℝ ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) )  ∈  𝒫  ℝ ) | 
						
							| 57 | 1 2 3 | smff | ⊢ ( 𝜑  →  𝐹 : 𝐷 ⟶ ℝ ) | 
						
							| 58 | 57 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝐷 ) | 
						
							| 59 |  | fncnvima2 | ⊢ ( 𝐹  Fn  𝐷  →  ( ◡ 𝐹  “  ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) ) )  =  { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  ∈  ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) ) } ) | 
						
							| 60 | 58 59 | syl | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) ) )  =  { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  ∈  ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) ) } ) | 
						
							| 61 | 60 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( ◡ 𝐹  “  ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) ) )  =  { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  ∈  ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) ) } ) | 
						
							| 62 |  | nfv | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑦  ∈  ℝ ) | 
						
							| 63 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  𝑆  ∈  SAlg ) | 
						
							| 64 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  𝐷  ∈  V ) | 
						
							| 65 | 57 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝐹 : 𝐷 ⟶ ℝ ) | 
						
							| 66 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝑥  ∈  𝐷 ) | 
						
							| 67 | 65 66 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 68 | 67 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑥  ∈  𝐷 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 69 | 57 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  𝐷  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 70 | 69 | eqcomd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐷  ↦  ( 𝐹 ‘ 𝑥 ) )  =  𝐹 ) | 
						
							| 71 | 70 2 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐷  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝑥  ∈  𝐷  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 73 |  | peano2rem | ⊢ ( 𝑦  ∈  ℝ  →  ( 𝑦  −  1 )  ∈  ℝ ) | 
						
							| 74 | 73 | rexrd | ⊢ ( 𝑦  ∈  ℝ  →  ( 𝑦  −  1 )  ∈  ℝ* ) | 
						
							| 75 | 74 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝑦  −  1 )  ∈  ℝ* ) | 
						
							| 76 |  | peano2re | ⊢ ( 𝑦  ∈  ℝ  →  ( 𝑦  +  1 )  ∈  ℝ ) | 
						
							| 77 | 76 | rexrd | ⊢ ( 𝑦  ∈  ℝ  →  ( 𝑦  +  1 )  ∈  ℝ* ) | 
						
							| 78 | 77 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝑦  +  1 )  ∈  ℝ* ) | 
						
							| 79 | 62 63 64 68 72 75 78 | smfpimioompt | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  { 𝑥  ∈  𝐷  ∣  ( 𝐹 ‘ 𝑥 )  ∈  ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 80 | 61 79 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( ◡ 𝐹  “  ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) ) )  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 81 | 56 80 | jca | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) )  ∈  𝒫  ℝ  ∧  ( ◡ 𝐹  “  ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) ) )  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 82 |  | imaeq2 | ⊢ ( 𝑒  =  ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) )  →  ( ◡ 𝐹  “  𝑒 )  =  ( ◡ 𝐹  “  ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) ) ) ) | 
						
							| 83 | 82 | eleq1d | ⊢ ( 𝑒  =  ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) )  →  ( ( ◡ 𝐹  “  𝑒 )  ∈  ( 𝑆  ↾t  𝐷 )  ↔  ( ◡ 𝐹  “  ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) ) )  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 84 | 83 4 | elrab2 | ⊢ ( ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) )  ∈  𝑇  ↔  ( ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) )  ∈  𝒫  ℝ  ∧  ( ◡ 𝐹  “  ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) ) )  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 85 | 81 84 | sylibr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) )  ∈  𝑇 ) | 
						
							| 86 |  | id | ⊢ ( 𝑦  ∈  ℝ  →  𝑦  ∈  ℝ ) | 
						
							| 87 |  | ltm1 | ⊢ ( 𝑦  ∈  ℝ  →  ( 𝑦  −  1 )  <  𝑦 ) | 
						
							| 88 |  | ltp1 | ⊢ ( 𝑦  ∈  ℝ  →  𝑦  <  ( 𝑦  +  1 ) ) | 
						
							| 89 | 74 77 86 87 88 | eliood | ⊢ ( 𝑦  ∈  ℝ  →  𝑦  ∈  ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) ) ) | 
						
							| 90 | 89 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  𝑦  ∈  ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) ) ) | 
						
							| 91 |  | nfv | ⊢ Ⅎ 𝑒 𝑦  ∈  ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) ) | 
						
							| 92 |  | nfcv | ⊢ Ⅎ 𝑒 ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) ) | 
						
							| 93 |  | eleq2 | ⊢ ( 𝑒  =  ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) )  →  ( 𝑦  ∈  𝑒  ↔  𝑦  ∈  ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) ) ) ) | 
						
							| 94 | 91 92 29 93 | rspcef | ⊢ ( ( ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) )  ∈  𝑇  ∧  𝑦  ∈  ( ( 𝑦  −  1 ) (,) ( 𝑦  +  1 ) ) )  →  ∃ 𝑒  ∈  𝑇 𝑦  ∈  𝑒 ) | 
						
							| 95 | 85 90 94 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ∃ 𝑒  ∈  𝑇 𝑦  ∈  𝑒 ) | 
						
							| 96 | 95 30 | sylibr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  𝑦  ∈  ∪  𝑇 ) | 
						
							| 97 | 96 | ex | ⊢ ( 𝜑  →  ( 𝑦  ∈  ℝ  →  𝑦  ∈  ∪  𝑇 ) ) | 
						
							| 98 | 51 97 | impbid | ⊢ ( 𝜑  →  ( 𝑦  ∈  ∪  𝑇  ↔  𝑦  ∈  ℝ ) ) | 
						
							| 99 | 26 98 | alrimi | ⊢ ( 𝜑  →  ∀ 𝑦 ( 𝑦  ∈  ∪  𝑇  ↔  𝑦  ∈  ℝ ) ) | 
						
							| 100 |  | dfcleq | ⊢ ( ∪  𝑇  =  ℝ  ↔  ∀ 𝑦 ( 𝑦  ∈  ∪  𝑇  ↔  𝑦  ∈  ℝ ) ) | 
						
							| 101 | 99 100 | sylibr | ⊢ ( 𝜑  →  ∪  𝑇  =  ℝ ) | 
						
							| 102 | 101 | difeq1d | ⊢ ( 𝜑  →  ( ∪  𝑇  ∖  𝑥 )  =  ( ℝ  ∖  𝑥 ) ) | 
						
							| 103 | 102 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑇 )  →  ( ∪  𝑇  ∖  𝑥 )  =  ( ℝ  ∖  𝑥 ) ) | 
						
							| 104 |  | difss | ⊢ ( ℝ  ∖  𝑥 )  ⊆  ℝ | 
						
							| 105 | 5 104 | ssexi | ⊢ ( ℝ  ∖  𝑥 )  ∈  V | 
						
							| 106 |  | elpwg | ⊢ ( ( ℝ  ∖  𝑥 )  ∈  V  →  ( ( ℝ  ∖  𝑥 )  ∈  𝒫  ℝ  ↔  ( ℝ  ∖  𝑥 )  ⊆  ℝ ) ) | 
						
							| 107 | 105 106 | ax-mp | ⊢ ( ( ℝ  ∖  𝑥 )  ∈  𝒫  ℝ  ↔  ( ℝ  ∖  𝑥 )  ⊆  ℝ ) | 
						
							| 108 | 104 107 | mpbir | ⊢ ( ℝ  ∖  𝑥 )  ∈  𝒫  ℝ | 
						
							| 109 | 108 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑇 )  →  ( ℝ  ∖  𝑥 )  ∈  𝒫  ℝ ) | 
						
							| 110 | 57 | ffund | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 111 |  | difpreima | ⊢ ( Fun  𝐹  →  ( ◡ 𝐹  “  ( ℝ  ∖  𝑥 ) )  =  ( ( ◡ 𝐹  “  ℝ )  ∖  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 112 | 110 111 | syl | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  ( ℝ  ∖  𝑥 ) )  =  ( ( ◡ 𝐹  “  ℝ )  ∖  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 113 |  | fimacnv | ⊢ ( 𝐹 : 𝐷 ⟶ ℝ  →  ( ◡ 𝐹  “  ℝ )  =  𝐷 ) | 
						
							| 114 | 57 113 | syl | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  ℝ )  =  𝐷 ) | 
						
							| 115 | 1 14 | restuni4 | ⊢ ( 𝜑  →  ∪  ( 𝑆  ↾t  𝐷 )  =  𝐷 ) | 
						
							| 116 | 114 115 | eqtr4d | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  ℝ )  =  ∪  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 117 | 116 | difeq1d | ⊢ ( 𝜑  →  ( ( ◡ 𝐹  “  ℝ )  ∖  ( ◡ 𝐹  “  𝑥 ) )  =  ( ∪  ( 𝑆  ↾t  𝐷 )  ∖  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 118 | 112 117 | eqtrd | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  ( ℝ  ∖  𝑥 ) )  =  ( ∪  ( 𝑆  ↾t  𝐷 )  ∖  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 119 | 118 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑇 )  →  ( ◡ 𝐹  “  ( ℝ  ∖  𝑥 ) )  =  ( ∪  ( 𝑆  ↾t  𝐷 )  ∖  ( ◡ 𝐹  “  𝑥 ) ) ) | 
						
							| 120 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑇 )  →  ( 𝑆  ↾t  𝐷 )  ∈  SAlg ) | 
						
							| 121 |  | imaeq2 | ⊢ ( 𝑒  =  𝑥  →  ( ◡ 𝐹  “  𝑒 )  =  ( ◡ 𝐹  “  𝑥 ) ) | 
						
							| 122 | 121 | eleq1d | ⊢ ( 𝑒  =  𝑥  →  ( ( ◡ 𝐹  “  𝑒 )  ∈  ( 𝑆  ↾t  𝐷 )  ↔  ( ◡ 𝐹  “  𝑥 )  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 123 | 122 4 | elrab2 | ⊢ ( 𝑥  ∈  𝑇  ↔  ( 𝑥  ∈  𝒫  ℝ  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 124 | 123 | biimpi | ⊢ ( 𝑥  ∈  𝑇  →  ( 𝑥  ∈  𝒫  ℝ  ∧  ( ◡ 𝐹  “  𝑥 )  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 125 | 124 | simprd | ⊢ ( 𝑥  ∈  𝑇  →  ( ◡ 𝐹  “  𝑥 )  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 126 | 125 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑇 )  →  ( ◡ 𝐹  “  𝑥 )  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 127 | 120 126 | saldifcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑇 )  →  ( ∪  ( 𝑆  ↾t  𝐷 )  ∖  ( ◡ 𝐹  “  𝑥 ) )  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 128 | 119 127 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑇 )  →  ( ◡ 𝐹  “  ( ℝ  ∖  𝑥 ) )  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 129 | 109 128 | jca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑇 )  →  ( ( ℝ  ∖  𝑥 )  ∈  𝒫  ℝ  ∧  ( ◡ 𝐹  “  ( ℝ  ∖  𝑥 ) )  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 130 |  | imaeq2 | ⊢ ( 𝑒  =  ( ℝ  ∖  𝑥 )  →  ( ◡ 𝐹  “  𝑒 )  =  ( ◡ 𝐹  “  ( ℝ  ∖  𝑥 ) ) ) | 
						
							| 131 | 130 | eleq1d | ⊢ ( 𝑒  =  ( ℝ  ∖  𝑥 )  →  ( ( ◡ 𝐹  “  𝑒 )  ∈  ( 𝑆  ↾t  𝐷 )  ↔  ( ◡ 𝐹  “  ( ℝ  ∖  𝑥 ) )  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 132 | 131 4 | elrab2 | ⊢ ( ( ℝ  ∖  𝑥 )  ∈  𝑇  ↔  ( ( ℝ  ∖  𝑥 )  ∈  𝒫  ℝ  ∧  ( ◡ 𝐹  “  ( ℝ  ∖  𝑥 ) )  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 133 | 129 132 | sylibr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑇 )  →  ( ℝ  ∖  𝑥 )  ∈  𝑇 ) | 
						
							| 134 | 103 133 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑇 )  →  ( ∪  𝑇  ∖  𝑥 )  ∈  𝑇 ) | 
						
							| 135 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 136 |  | fvex | ⊢ ( 𝑔 ‘ 𝑛 )  ∈  V | 
						
							| 137 | 135 136 | iunex | ⊢ ∪  𝑛  ∈  ℕ ( 𝑔 ‘ 𝑛 )  ∈  V | 
						
							| 138 | 137 | a1i | ⊢ ( 𝑔 : ℕ ⟶ 𝑇  →  ∪  𝑛  ∈  ℕ ( 𝑔 ‘ 𝑛 )  ∈  V ) | 
						
							| 139 |  | ffvelcdm | ⊢ ( ( 𝑔 : ℕ ⟶ 𝑇  ∧  𝑛  ∈  ℕ )  →  ( 𝑔 ‘ 𝑛 )  ∈  𝑇 ) | 
						
							| 140 | 4 | eleq2i | ⊢ ( ( 𝑔 ‘ 𝑛 )  ∈  𝑇  ↔  ( 𝑔 ‘ 𝑛 )  ∈  { 𝑒  ∈  𝒫  ℝ  ∣  ( ◡ 𝐹  “  𝑒 )  ∈  ( 𝑆  ↾t  𝐷 ) } ) | 
						
							| 141 | 140 | biimpi | ⊢ ( ( 𝑔 ‘ 𝑛 )  ∈  𝑇  →  ( 𝑔 ‘ 𝑛 )  ∈  { 𝑒  ∈  𝒫  ℝ  ∣  ( ◡ 𝐹  “  𝑒 )  ∈  ( 𝑆  ↾t  𝐷 ) } ) | 
						
							| 142 |  | elrabi | ⊢ ( ( 𝑔 ‘ 𝑛 )  ∈  { 𝑒  ∈  𝒫  ℝ  ∣  ( ◡ 𝐹  “  𝑒 )  ∈  ( 𝑆  ↾t  𝐷 ) }  →  ( 𝑔 ‘ 𝑛 )  ∈  𝒫  ℝ ) | 
						
							| 143 |  | elpwi | ⊢ ( ( 𝑔 ‘ 𝑛 )  ∈  𝒫  ℝ  →  ( 𝑔 ‘ 𝑛 )  ⊆  ℝ ) | 
						
							| 144 | 139 141 142 143 | 4syl | ⊢ ( ( 𝑔 : ℕ ⟶ 𝑇  ∧  𝑛  ∈  ℕ )  →  ( 𝑔 ‘ 𝑛 )  ⊆  ℝ ) | 
						
							| 145 | 144 | iunssd | ⊢ ( 𝑔 : ℕ ⟶ 𝑇  →  ∪  𝑛  ∈  ℕ ( 𝑔 ‘ 𝑛 )  ⊆  ℝ ) | 
						
							| 146 | 138 145 | elpwd | ⊢ ( 𝑔 : ℕ ⟶ 𝑇  →  ∪  𝑛  ∈  ℕ ( 𝑔 ‘ 𝑛 )  ∈  𝒫  ℝ ) | 
						
							| 147 | 146 | adantl | ⊢ ( ( 𝜑  ∧  𝑔 : ℕ ⟶ 𝑇 )  →  ∪  𝑛  ∈  ℕ ( 𝑔 ‘ 𝑛 )  ∈  𝒫  ℝ ) | 
						
							| 148 |  | imaiun | ⊢ ( ◡ 𝐹  “  ∪  𝑛  ∈  ℕ ( 𝑔 ‘ 𝑛 ) )  =  ∪  𝑛  ∈  ℕ ( ◡ 𝐹  “  ( 𝑔 ‘ 𝑛 ) ) | 
						
							| 149 | 148 | a1i | ⊢ ( ( 𝜑  ∧  𝑔 : ℕ ⟶ 𝑇 )  →  ( ◡ 𝐹  “  ∪  𝑛  ∈  ℕ ( 𝑔 ‘ 𝑛 ) )  =  ∪  𝑛  ∈  ℕ ( ◡ 𝐹  “  ( 𝑔 ‘ 𝑛 ) ) ) | 
						
							| 150 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝑔 : ℕ ⟶ 𝑇 )  →  ( 𝑆  ↾t  𝐷 )  ∈  SAlg ) | 
						
							| 151 |  | nnct | ⊢ ℕ  ≼  ω | 
						
							| 152 | 151 | a1i | ⊢ ( ( 𝜑  ∧  𝑔 : ℕ ⟶ 𝑇 )  →  ℕ  ≼  ω ) | 
						
							| 153 |  | imaeq2 | ⊢ ( 𝑒  =  ( 𝑔 ‘ 𝑛 )  →  ( ◡ 𝐹  “  𝑒 )  =  ( ◡ 𝐹  “  ( 𝑔 ‘ 𝑛 ) ) ) | 
						
							| 154 | 153 | eleq1d | ⊢ ( 𝑒  =  ( 𝑔 ‘ 𝑛 )  →  ( ( ◡ 𝐹  “  𝑒 )  ∈  ( 𝑆  ↾t  𝐷 )  ↔  ( ◡ 𝐹  “  ( 𝑔 ‘ 𝑛 ) )  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 155 | 154 4 | elrab2 | ⊢ ( ( 𝑔 ‘ 𝑛 )  ∈  𝑇  ↔  ( ( 𝑔 ‘ 𝑛 )  ∈  𝒫  ℝ  ∧  ( ◡ 𝐹  “  ( 𝑔 ‘ 𝑛 ) )  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 156 | 155 | biimpi | ⊢ ( ( 𝑔 ‘ 𝑛 )  ∈  𝑇  →  ( ( 𝑔 ‘ 𝑛 )  ∈  𝒫  ℝ  ∧  ( ◡ 𝐹  “  ( 𝑔 ‘ 𝑛 ) )  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 157 | 156 | simprd | ⊢ ( ( 𝑔 ‘ 𝑛 )  ∈  𝑇  →  ( ◡ 𝐹  “  ( 𝑔 ‘ 𝑛 ) )  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 158 | 139 157 | syl | ⊢ ( ( 𝑔 : ℕ ⟶ 𝑇  ∧  𝑛  ∈  ℕ )  →  ( ◡ 𝐹  “  ( 𝑔 ‘ 𝑛 ) )  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 159 | 158 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑔 : ℕ ⟶ 𝑇 )  ∧  𝑛  ∈  ℕ )  →  ( ◡ 𝐹  “  ( 𝑔 ‘ 𝑛 ) )  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 160 | 150 152 159 | saliuncl | ⊢ ( ( 𝜑  ∧  𝑔 : ℕ ⟶ 𝑇 )  →  ∪  𝑛  ∈  ℕ ( ◡ 𝐹  “  ( 𝑔 ‘ 𝑛 ) )  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 161 | 149 160 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑔 : ℕ ⟶ 𝑇 )  →  ( ◡ 𝐹  “  ∪  𝑛  ∈  ℕ ( 𝑔 ‘ 𝑛 ) )  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 162 | 147 161 | jca | ⊢ ( ( 𝜑  ∧  𝑔 : ℕ ⟶ 𝑇 )  →  ( ∪  𝑛  ∈  ℕ ( 𝑔 ‘ 𝑛 )  ∈  𝒫  ℝ  ∧  ( ◡ 𝐹  “  ∪  𝑛  ∈  ℕ ( 𝑔 ‘ 𝑛 ) )  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 163 |  | imaeq2 | ⊢ ( 𝑒  =  ∪  𝑛  ∈  ℕ ( 𝑔 ‘ 𝑛 )  →  ( ◡ 𝐹  “  𝑒 )  =  ( ◡ 𝐹  “  ∪  𝑛  ∈  ℕ ( 𝑔 ‘ 𝑛 ) ) ) | 
						
							| 164 | 163 | eleq1d | ⊢ ( 𝑒  =  ∪  𝑛  ∈  ℕ ( 𝑔 ‘ 𝑛 )  →  ( ( ◡ 𝐹  “  𝑒 )  ∈  ( 𝑆  ↾t  𝐷 )  ↔  ( ◡ 𝐹  “  ∪  𝑛  ∈  ℕ ( 𝑔 ‘ 𝑛 ) )  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 165 | 164 4 | elrab2 | ⊢ ( ∪  𝑛  ∈  ℕ ( 𝑔 ‘ 𝑛 )  ∈  𝑇  ↔  ( ∪  𝑛  ∈  ℕ ( 𝑔 ‘ 𝑛 )  ∈  𝒫  ℝ  ∧  ( ◡ 𝐹  “  ∪  𝑛  ∈  ℕ ( 𝑔 ‘ 𝑛 ) )  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 166 | 162 165 | sylibr | ⊢ ( ( 𝜑  ∧  𝑔 : ℕ ⟶ 𝑇 )  →  ∪  𝑛  ∈  ℕ ( 𝑔 ‘ 𝑛 )  ∈  𝑇 ) | 
						
							| 167 | 8 24 25 134 166 | issalnnd | ⊢ ( 𝜑  →  𝑇  ∈  SAlg ) |