| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfresal.s |
|
| 2 |
|
smfresal.f |
|
| 3 |
|
smfresal.d |
|
| 4 |
|
smfresal.t |
|
| 5 |
|
reex |
|
| 6 |
5
|
pwex |
|
| 7 |
4 6
|
rabex2 |
|
| 8 |
7
|
a1i |
|
| 9 |
|
0elpw |
|
| 10 |
9
|
a1i |
|
| 11 |
|
ima0 |
|
| 12 |
11
|
a1i |
|
| 13 |
1
|
uniexd |
|
| 14 |
1 2 3
|
smfdmss |
|
| 15 |
13 14
|
ssexd |
|
| 16 |
|
eqid |
|
| 17 |
1 15 16
|
subsalsal |
|
| 18 |
17
|
0sald |
|
| 19 |
12 18
|
eqeltrd |
|
| 20 |
10 19
|
jca |
|
| 21 |
|
imaeq2 |
|
| 22 |
21
|
eleq1d |
|
| 23 |
22 4
|
elrab2 |
|
| 24 |
20 23
|
sylibr |
|
| 25 |
|
eqid |
|
| 26 |
|
nfv |
|
| 27 |
|
nfcv |
|
| 28 |
|
nfrab1 |
|
| 29 |
4 28
|
nfcxfr |
|
| 30 |
27 29
|
eluni2f |
|
| 31 |
30
|
biimpi |
|
| 32 |
31
|
adantl |
|
| 33 |
|
nfv |
|
| 34 |
29
|
nfuni |
|
| 35 |
27 34
|
nfel |
|
| 36 |
33 35
|
nfan |
|
| 37 |
27
|
nfel1 |
|
| 38 |
4
|
eleq2i |
|
| 39 |
38
|
biimpi |
|
| 40 |
|
rabidim1 |
|
| 41 |
39 40
|
syl |
|
| 42 |
|
elpwi |
|
| 43 |
41 42
|
syl |
|
| 44 |
43
|
adantr |
|
| 45 |
|
simpr |
|
| 46 |
44 45
|
sseldd |
|
| 47 |
46
|
ex |
|
| 48 |
47
|
a1i |
|
| 49 |
36 37 48
|
rexlimd |
|
| 50 |
32 49
|
mpd |
|
| 51 |
50
|
ex |
|
| 52 |
|
ovexd |
|
| 53 |
|
ioossre |
|
| 54 |
53
|
a1i |
|
| 55 |
52 54
|
elpwd |
|
| 56 |
55
|
adantr |
|
| 57 |
1 2 3
|
smff |
|
| 58 |
57
|
ffnd |
|
| 59 |
|
fncnvima2 |
|
| 60 |
58 59
|
syl |
|
| 61 |
60
|
adantr |
|
| 62 |
|
nfv |
|
| 63 |
1
|
adantr |
|
| 64 |
15
|
adantr |
|
| 65 |
57
|
adantr |
|
| 66 |
|
simpr |
|
| 67 |
65 66
|
ffvelcdmd |
|
| 68 |
67
|
adantlr |
|
| 69 |
57
|
feqmptd |
|
| 70 |
69
|
eqcomd |
|
| 71 |
70 2
|
eqeltrd |
|
| 72 |
71
|
adantr |
|
| 73 |
|
peano2rem |
|
| 74 |
73
|
rexrd |
|
| 75 |
74
|
adantl |
|
| 76 |
|
peano2re |
|
| 77 |
76
|
rexrd |
|
| 78 |
77
|
adantl |
|
| 79 |
62 63 64 68 72 75 78
|
smfpimioompt |
|
| 80 |
61 79
|
eqeltrd |
|
| 81 |
56 80
|
jca |
|
| 82 |
|
imaeq2 |
|
| 83 |
82
|
eleq1d |
|
| 84 |
83 4
|
elrab2 |
|
| 85 |
81 84
|
sylibr |
|
| 86 |
|
id |
|
| 87 |
|
ltm1 |
|
| 88 |
|
ltp1 |
|
| 89 |
74 77 86 87 88
|
eliood |
|
| 90 |
89
|
adantl |
|
| 91 |
|
nfv |
|
| 92 |
|
nfcv |
|
| 93 |
|
eleq2 |
|
| 94 |
91 92 29 93
|
rspcef |
|
| 95 |
85 90 94
|
syl2anc |
|
| 96 |
95 30
|
sylibr |
|
| 97 |
96
|
ex |
|
| 98 |
51 97
|
impbid |
|
| 99 |
26 98
|
alrimi |
|
| 100 |
|
dfcleq |
|
| 101 |
99 100
|
sylibr |
|
| 102 |
101
|
difeq1d |
|
| 103 |
102
|
adantr |
|
| 104 |
|
difss |
|
| 105 |
5 104
|
ssexi |
|
| 106 |
|
elpwg |
|
| 107 |
105 106
|
ax-mp |
|
| 108 |
104 107
|
mpbir |
|
| 109 |
108
|
a1i |
|
| 110 |
57
|
ffund |
|
| 111 |
|
difpreima |
|
| 112 |
110 111
|
syl |
|
| 113 |
|
fimacnv |
|
| 114 |
57 113
|
syl |
|
| 115 |
1 14
|
restuni4 |
|
| 116 |
114 115
|
eqtr4d |
|
| 117 |
116
|
difeq1d |
|
| 118 |
112 117
|
eqtrd |
|
| 119 |
118
|
adantr |
|
| 120 |
17
|
adantr |
|
| 121 |
|
imaeq2 |
|
| 122 |
121
|
eleq1d |
|
| 123 |
122 4
|
elrab2 |
|
| 124 |
123
|
biimpi |
|
| 125 |
124
|
simprd |
|
| 126 |
125
|
adantl |
|
| 127 |
120 126
|
saldifcld |
|
| 128 |
119 127
|
eqeltrd |
|
| 129 |
109 128
|
jca |
|
| 130 |
|
imaeq2 |
|
| 131 |
130
|
eleq1d |
|
| 132 |
131 4
|
elrab2 |
|
| 133 |
129 132
|
sylibr |
|
| 134 |
103 133
|
eqeltrd |
|
| 135 |
|
nnex |
|
| 136 |
|
fvex |
|
| 137 |
135 136
|
iunex |
|
| 138 |
137
|
a1i |
|
| 139 |
|
ffvelcdm |
|
| 140 |
4
|
eleq2i |
|
| 141 |
140
|
biimpi |
|
| 142 |
|
elrabi |
|
| 143 |
|
elpwi |
|
| 144 |
139 141 142 143
|
4syl |
|
| 145 |
144
|
iunssd |
|
| 146 |
138 145
|
elpwd |
|
| 147 |
146
|
adantl |
|
| 148 |
|
imaiun |
|
| 149 |
148
|
a1i |
|
| 150 |
17
|
adantr |
|
| 151 |
|
nnct |
|
| 152 |
151
|
a1i |
|
| 153 |
|
imaeq2 |
|
| 154 |
153
|
eleq1d |
|
| 155 |
154 4
|
elrab2 |
|
| 156 |
155
|
biimpi |
|
| 157 |
156
|
simprd |
|
| 158 |
139 157
|
syl |
|
| 159 |
158
|
adantll |
|
| 160 |
150 152 159
|
saliuncl |
|
| 161 |
149 160
|
eqeltrd |
|
| 162 |
147 161
|
jca |
|
| 163 |
|
imaeq2 |
|
| 164 |
163
|
eleq1d |
|
| 165 |
164 4
|
elrab2 |
|
| 166 |
162 165
|
sylibr |
|
| 167 |
8 24 25 134 166
|
issalnnd |
|