Step |
Hyp |
Ref |
Expression |
1 |
|
smfresal.s |
|- ( ph -> S e. SAlg ) |
2 |
|
smfresal.f |
|- ( ph -> F e. ( SMblFn ` S ) ) |
3 |
|
smfresal.d |
|- D = dom F |
4 |
|
smfresal.t |
|- T = { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) } |
5 |
|
reex |
|- RR e. _V |
6 |
5
|
pwex |
|- ~P RR e. _V |
7 |
4 6
|
rabex2 |
|- T e. _V |
8 |
7
|
a1i |
|- ( ph -> T e. _V ) |
9 |
|
0elpw |
|- (/) e. ~P RR |
10 |
9
|
a1i |
|- ( ph -> (/) e. ~P RR ) |
11 |
|
ima0 |
|- ( `' F " (/) ) = (/) |
12 |
11
|
a1i |
|- ( ph -> ( `' F " (/) ) = (/) ) |
13 |
1
|
uniexd |
|- ( ph -> U. S e. _V ) |
14 |
1 2 3
|
smfdmss |
|- ( ph -> D C_ U. S ) |
15 |
13 14
|
ssexd |
|- ( ph -> D e. _V ) |
16 |
|
eqid |
|- ( S |`t D ) = ( S |`t D ) |
17 |
1 15 16
|
subsalsal |
|- ( ph -> ( S |`t D ) e. SAlg ) |
18 |
17
|
0sald |
|- ( ph -> (/) e. ( S |`t D ) ) |
19 |
12 18
|
eqeltrd |
|- ( ph -> ( `' F " (/) ) e. ( S |`t D ) ) |
20 |
10 19
|
jca |
|- ( ph -> ( (/) e. ~P RR /\ ( `' F " (/) ) e. ( S |`t D ) ) ) |
21 |
|
imaeq2 |
|- ( e = (/) -> ( `' F " e ) = ( `' F " (/) ) ) |
22 |
21
|
eleq1d |
|- ( e = (/) -> ( ( `' F " e ) e. ( S |`t D ) <-> ( `' F " (/) ) e. ( S |`t D ) ) ) |
23 |
22 4
|
elrab2 |
|- ( (/) e. T <-> ( (/) e. ~P RR /\ ( `' F " (/) ) e. ( S |`t D ) ) ) |
24 |
20 23
|
sylibr |
|- ( ph -> (/) e. T ) |
25 |
|
eqid |
|- U. T = U. T |
26 |
|
nfv |
|- F/ y ph |
27 |
|
nfcv |
|- F/_ e y |
28 |
|
nfrab1 |
|- F/_ e { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) } |
29 |
4 28
|
nfcxfr |
|- F/_ e T |
30 |
27 29
|
eluni2f |
|- ( y e. U. T <-> E. e e. T y e. e ) |
31 |
30
|
biimpi |
|- ( y e. U. T -> E. e e. T y e. e ) |
32 |
31
|
adantl |
|- ( ( ph /\ y e. U. T ) -> E. e e. T y e. e ) |
33 |
|
nfv |
|- F/ e ph |
34 |
29
|
nfuni |
|- F/_ e U. T |
35 |
27 34
|
nfel |
|- F/ e y e. U. T |
36 |
33 35
|
nfan |
|- F/ e ( ph /\ y e. U. T ) |
37 |
27
|
nfel1 |
|- F/ e y e. RR |
38 |
4
|
eleq2i |
|- ( e e. T <-> e e. { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) } ) |
39 |
38
|
biimpi |
|- ( e e. T -> e e. { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) } ) |
40 |
|
rabidim1 |
|- ( e e. { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) } -> e e. ~P RR ) |
41 |
39 40
|
syl |
|- ( e e. T -> e e. ~P RR ) |
42 |
|
elpwi |
|- ( e e. ~P RR -> e C_ RR ) |
43 |
41 42
|
syl |
|- ( e e. T -> e C_ RR ) |
44 |
43
|
adantr |
|- ( ( e e. T /\ y e. e ) -> e C_ RR ) |
45 |
|
simpr |
|- ( ( e e. T /\ y e. e ) -> y e. e ) |
46 |
44 45
|
sseldd |
|- ( ( e e. T /\ y e. e ) -> y e. RR ) |
47 |
46
|
ex |
|- ( e e. T -> ( y e. e -> y e. RR ) ) |
48 |
47
|
a1i |
|- ( ( ph /\ y e. U. T ) -> ( e e. T -> ( y e. e -> y e. RR ) ) ) |
49 |
36 37 48
|
rexlimd |
|- ( ( ph /\ y e. U. T ) -> ( E. e e. T y e. e -> y e. RR ) ) |
50 |
32 49
|
mpd |
|- ( ( ph /\ y e. U. T ) -> y e. RR ) |
51 |
50
|
ex |
|- ( ph -> ( y e. U. T -> y e. RR ) ) |
52 |
|
ovexd |
|- ( ph -> ( ( y - 1 ) (,) ( y + 1 ) ) e. _V ) |
53 |
|
ioossre |
|- ( ( y - 1 ) (,) ( y + 1 ) ) C_ RR |
54 |
53
|
a1i |
|- ( ph -> ( ( y - 1 ) (,) ( y + 1 ) ) C_ RR ) |
55 |
52 54
|
elpwd |
|- ( ph -> ( ( y - 1 ) (,) ( y + 1 ) ) e. ~P RR ) |
56 |
55
|
adantr |
|- ( ( ph /\ y e. RR ) -> ( ( y - 1 ) (,) ( y + 1 ) ) e. ~P RR ) |
57 |
1 2 3
|
smff |
|- ( ph -> F : D --> RR ) |
58 |
57
|
ffnd |
|- ( ph -> F Fn D ) |
59 |
|
fncnvima2 |
|- ( F Fn D -> ( `' F " ( ( y - 1 ) (,) ( y + 1 ) ) ) = { x e. D | ( F ` x ) e. ( ( y - 1 ) (,) ( y + 1 ) ) } ) |
60 |
58 59
|
syl |
|- ( ph -> ( `' F " ( ( y - 1 ) (,) ( y + 1 ) ) ) = { x e. D | ( F ` x ) e. ( ( y - 1 ) (,) ( y + 1 ) ) } ) |
61 |
60
|
adantr |
|- ( ( ph /\ y e. RR ) -> ( `' F " ( ( y - 1 ) (,) ( y + 1 ) ) ) = { x e. D | ( F ` x ) e. ( ( y - 1 ) (,) ( y + 1 ) ) } ) |
62 |
|
nfv |
|- F/ x ( ph /\ y e. RR ) |
63 |
1
|
adantr |
|- ( ( ph /\ y e. RR ) -> S e. SAlg ) |
64 |
15
|
adantr |
|- ( ( ph /\ y e. RR ) -> D e. _V ) |
65 |
57
|
adantr |
|- ( ( ph /\ x e. D ) -> F : D --> RR ) |
66 |
|
simpr |
|- ( ( ph /\ x e. D ) -> x e. D ) |
67 |
65 66
|
ffvelrnd |
|- ( ( ph /\ x e. D ) -> ( F ` x ) e. RR ) |
68 |
67
|
adantlr |
|- ( ( ( ph /\ y e. RR ) /\ x e. D ) -> ( F ` x ) e. RR ) |
69 |
57
|
feqmptd |
|- ( ph -> F = ( x e. D |-> ( F ` x ) ) ) |
70 |
69
|
eqcomd |
|- ( ph -> ( x e. D |-> ( F ` x ) ) = F ) |
71 |
70 2
|
eqeltrd |
|- ( ph -> ( x e. D |-> ( F ` x ) ) e. ( SMblFn ` S ) ) |
72 |
71
|
adantr |
|- ( ( ph /\ y e. RR ) -> ( x e. D |-> ( F ` x ) ) e. ( SMblFn ` S ) ) |
73 |
|
peano2rem |
|- ( y e. RR -> ( y - 1 ) e. RR ) |
74 |
73
|
rexrd |
|- ( y e. RR -> ( y - 1 ) e. RR* ) |
75 |
74
|
adantl |
|- ( ( ph /\ y e. RR ) -> ( y - 1 ) e. RR* ) |
76 |
|
peano2re |
|- ( y e. RR -> ( y + 1 ) e. RR ) |
77 |
76
|
rexrd |
|- ( y e. RR -> ( y + 1 ) e. RR* ) |
78 |
77
|
adantl |
|- ( ( ph /\ y e. RR ) -> ( y + 1 ) e. RR* ) |
79 |
62 63 64 68 72 75 78
|
smfpimioompt |
|- ( ( ph /\ y e. RR ) -> { x e. D | ( F ` x ) e. ( ( y - 1 ) (,) ( y + 1 ) ) } e. ( S |`t D ) ) |
80 |
61 79
|
eqeltrd |
|- ( ( ph /\ y e. RR ) -> ( `' F " ( ( y - 1 ) (,) ( y + 1 ) ) ) e. ( S |`t D ) ) |
81 |
56 80
|
jca |
|- ( ( ph /\ y e. RR ) -> ( ( ( y - 1 ) (,) ( y + 1 ) ) e. ~P RR /\ ( `' F " ( ( y - 1 ) (,) ( y + 1 ) ) ) e. ( S |`t D ) ) ) |
82 |
|
imaeq2 |
|- ( e = ( ( y - 1 ) (,) ( y + 1 ) ) -> ( `' F " e ) = ( `' F " ( ( y - 1 ) (,) ( y + 1 ) ) ) ) |
83 |
82
|
eleq1d |
|- ( e = ( ( y - 1 ) (,) ( y + 1 ) ) -> ( ( `' F " e ) e. ( S |`t D ) <-> ( `' F " ( ( y - 1 ) (,) ( y + 1 ) ) ) e. ( S |`t D ) ) ) |
84 |
83 4
|
elrab2 |
|- ( ( ( y - 1 ) (,) ( y + 1 ) ) e. T <-> ( ( ( y - 1 ) (,) ( y + 1 ) ) e. ~P RR /\ ( `' F " ( ( y - 1 ) (,) ( y + 1 ) ) ) e. ( S |`t D ) ) ) |
85 |
81 84
|
sylibr |
|- ( ( ph /\ y e. RR ) -> ( ( y - 1 ) (,) ( y + 1 ) ) e. T ) |
86 |
|
id |
|- ( y e. RR -> y e. RR ) |
87 |
|
ltm1 |
|- ( y e. RR -> ( y - 1 ) < y ) |
88 |
|
ltp1 |
|- ( y e. RR -> y < ( y + 1 ) ) |
89 |
74 77 86 87 88
|
eliood |
|- ( y e. RR -> y e. ( ( y - 1 ) (,) ( y + 1 ) ) ) |
90 |
89
|
adantl |
|- ( ( ph /\ y e. RR ) -> y e. ( ( y - 1 ) (,) ( y + 1 ) ) ) |
91 |
|
nfv |
|- F/ e y e. ( ( y - 1 ) (,) ( y + 1 ) ) |
92 |
|
nfcv |
|- F/_ e ( ( y - 1 ) (,) ( y + 1 ) ) |
93 |
|
eleq2 |
|- ( e = ( ( y - 1 ) (,) ( y + 1 ) ) -> ( y e. e <-> y e. ( ( y - 1 ) (,) ( y + 1 ) ) ) ) |
94 |
91 92 29 93
|
rspcef |
|- ( ( ( ( y - 1 ) (,) ( y + 1 ) ) e. T /\ y e. ( ( y - 1 ) (,) ( y + 1 ) ) ) -> E. e e. T y e. e ) |
95 |
85 90 94
|
syl2anc |
|- ( ( ph /\ y e. RR ) -> E. e e. T y e. e ) |
96 |
95 30
|
sylibr |
|- ( ( ph /\ y e. RR ) -> y e. U. T ) |
97 |
96
|
ex |
|- ( ph -> ( y e. RR -> y e. U. T ) ) |
98 |
51 97
|
impbid |
|- ( ph -> ( y e. U. T <-> y e. RR ) ) |
99 |
26 98
|
alrimi |
|- ( ph -> A. y ( y e. U. T <-> y e. RR ) ) |
100 |
|
dfcleq |
|- ( U. T = RR <-> A. y ( y e. U. T <-> y e. RR ) ) |
101 |
99 100
|
sylibr |
|- ( ph -> U. T = RR ) |
102 |
101
|
difeq1d |
|- ( ph -> ( U. T \ x ) = ( RR \ x ) ) |
103 |
102
|
adantr |
|- ( ( ph /\ x e. T ) -> ( U. T \ x ) = ( RR \ x ) ) |
104 |
|
difss |
|- ( RR \ x ) C_ RR |
105 |
5 104
|
ssexi |
|- ( RR \ x ) e. _V |
106 |
|
elpwg |
|- ( ( RR \ x ) e. _V -> ( ( RR \ x ) e. ~P RR <-> ( RR \ x ) C_ RR ) ) |
107 |
105 106
|
ax-mp |
|- ( ( RR \ x ) e. ~P RR <-> ( RR \ x ) C_ RR ) |
108 |
104 107
|
mpbir |
|- ( RR \ x ) e. ~P RR |
109 |
108
|
a1i |
|- ( ( ph /\ x e. T ) -> ( RR \ x ) e. ~P RR ) |
110 |
57
|
ffund |
|- ( ph -> Fun F ) |
111 |
|
difpreima |
|- ( Fun F -> ( `' F " ( RR \ x ) ) = ( ( `' F " RR ) \ ( `' F " x ) ) ) |
112 |
110 111
|
syl |
|- ( ph -> ( `' F " ( RR \ x ) ) = ( ( `' F " RR ) \ ( `' F " x ) ) ) |
113 |
|
fimacnv |
|- ( F : D --> RR -> ( `' F " RR ) = D ) |
114 |
57 113
|
syl |
|- ( ph -> ( `' F " RR ) = D ) |
115 |
1 14
|
restuni4 |
|- ( ph -> U. ( S |`t D ) = D ) |
116 |
114 115
|
eqtr4d |
|- ( ph -> ( `' F " RR ) = U. ( S |`t D ) ) |
117 |
116
|
difeq1d |
|- ( ph -> ( ( `' F " RR ) \ ( `' F " x ) ) = ( U. ( S |`t D ) \ ( `' F " x ) ) ) |
118 |
112 117
|
eqtrd |
|- ( ph -> ( `' F " ( RR \ x ) ) = ( U. ( S |`t D ) \ ( `' F " x ) ) ) |
119 |
118
|
adantr |
|- ( ( ph /\ x e. T ) -> ( `' F " ( RR \ x ) ) = ( U. ( S |`t D ) \ ( `' F " x ) ) ) |
120 |
17
|
adantr |
|- ( ( ph /\ x e. T ) -> ( S |`t D ) e. SAlg ) |
121 |
|
imaeq2 |
|- ( e = x -> ( `' F " e ) = ( `' F " x ) ) |
122 |
121
|
eleq1d |
|- ( e = x -> ( ( `' F " e ) e. ( S |`t D ) <-> ( `' F " x ) e. ( S |`t D ) ) ) |
123 |
122 4
|
elrab2 |
|- ( x e. T <-> ( x e. ~P RR /\ ( `' F " x ) e. ( S |`t D ) ) ) |
124 |
123
|
biimpi |
|- ( x e. T -> ( x e. ~P RR /\ ( `' F " x ) e. ( S |`t D ) ) ) |
125 |
124
|
simprd |
|- ( x e. T -> ( `' F " x ) e. ( S |`t D ) ) |
126 |
125
|
adantl |
|- ( ( ph /\ x e. T ) -> ( `' F " x ) e. ( S |`t D ) ) |
127 |
120 126
|
saldifcld |
|- ( ( ph /\ x e. T ) -> ( U. ( S |`t D ) \ ( `' F " x ) ) e. ( S |`t D ) ) |
128 |
119 127
|
eqeltrd |
|- ( ( ph /\ x e. T ) -> ( `' F " ( RR \ x ) ) e. ( S |`t D ) ) |
129 |
109 128
|
jca |
|- ( ( ph /\ x e. T ) -> ( ( RR \ x ) e. ~P RR /\ ( `' F " ( RR \ x ) ) e. ( S |`t D ) ) ) |
130 |
|
imaeq2 |
|- ( e = ( RR \ x ) -> ( `' F " e ) = ( `' F " ( RR \ x ) ) ) |
131 |
130
|
eleq1d |
|- ( e = ( RR \ x ) -> ( ( `' F " e ) e. ( S |`t D ) <-> ( `' F " ( RR \ x ) ) e. ( S |`t D ) ) ) |
132 |
131 4
|
elrab2 |
|- ( ( RR \ x ) e. T <-> ( ( RR \ x ) e. ~P RR /\ ( `' F " ( RR \ x ) ) e. ( S |`t D ) ) ) |
133 |
129 132
|
sylibr |
|- ( ( ph /\ x e. T ) -> ( RR \ x ) e. T ) |
134 |
103 133
|
eqeltrd |
|- ( ( ph /\ x e. T ) -> ( U. T \ x ) e. T ) |
135 |
|
nnex |
|- NN e. _V |
136 |
|
fvex |
|- ( g ` n ) e. _V |
137 |
135 136
|
iunex |
|- U_ n e. NN ( g ` n ) e. _V |
138 |
137
|
a1i |
|- ( g : NN --> T -> U_ n e. NN ( g ` n ) e. _V ) |
139 |
|
ffvelrn |
|- ( ( g : NN --> T /\ n e. NN ) -> ( g ` n ) e. T ) |
140 |
4
|
eleq2i |
|- ( ( g ` n ) e. T <-> ( g ` n ) e. { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) } ) |
141 |
140
|
biimpi |
|- ( ( g ` n ) e. T -> ( g ` n ) e. { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) } ) |
142 |
|
elrabi |
|- ( ( g ` n ) e. { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) } -> ( g ` n ) e. ~P RR ) |
143 |
141 142
|
syl |
|- ( ( g ` n ) e. T -> ( g ` n ) e. ~P RR ) |
144 |
|
elpwi |
|- ( ( g ` n ) e. ~P RR -> ( g ` n ) C_ RR ) |
145 |
143 144
|
syl |
|- ( ( g ` n ) e. T -> ( g ` n ) C_ RR ) |
146 |
139 145
|
syl |
|- ( ( g : NN --> T /\ n e. NN ) -> ( g ` n ) C_ RR ) |
147 |
146
|
iunssd |
|- ( g : NN --> T -> U_ n e. NN ( g ` n ) C_ RR ) |
148 |
138 147
|
elpwd |
|- ( g : NN --> T -> U_ n e. NN ( g ` n ) e. ~P RR ) |
149 |
148
|
adantl |
|- ( ( ph /\ g : NN --> T ) -> U_ n e. NN ( g ` n ) e. ~P RR ) |
150 |
|
imaiun |
|- ( `' F " U_ n e. NN ( g ` n ) ) = U_ n e. NN ( `' F " ( g ` n ) ) |
151 |
150
|
a1i |
|- ( ( ph /\ g : NN --> T ) -> ( `' F " U_ n e. NN ( g ` n ) ) = U_ n e. NN ( `' F " ( g ` n ) ) ) |
152 |
17
|
adantr |
|- ( ( ph /\ g : NN --> T ) -> ( S |`t D ) e. SAlg ) |
153 |
|
nnct |
|- NN ~<_ _om |
154 |
153
|
a1i |
|- ( ( ph /\ g : NN --> T ) -> NN ~<_ _om ) |
155 |
|
imaeq2 |
|- ( e = ( g ` n ) -> ( `' F " e ) = ( `' F " ( g ` n ) ) ) |
156 |
155
|
eleq1d |
|- ( e = ( g ` n ) -> ( ( `' F " e ) e. ( S |`t D ) <-> ( `' F " ( g ` n ) ) e. ( S |`t D ) ) ) |
157 |
156 4
|
elrab2 |
|- ( ( g ` n ) e. T <-> ( ( g ` n ) e. ~P RR /\ ( `' F " ( g ` n ) ) e. ( S |`t D ) ) ) |
158 |
157
|
biimpi |
|- ( ( g ` n ) e. T -> ( ( g ` n ) e. ~P RR /\ ( `' F " ( g ` n ) ) e. ( S |`t D ) ) ) |
159 |
158
|
simprd |
|- ( ( g ` n ) e. T -> ( `' F " ( g ` n ) ) e. ( S |`t D ) ) |
160 |
139 159
|
syl |
|- ( ( g : NN --> T /\ n e. NN ) -> ( `' F " ( g ` n ) ) e. ( S |`t D ) ) |
161 |
160
|
adantll |
|- ( ( ( ph /\ g : NN --> T ) /\ n e. NN ) -> ( `' F " ( g ` n ) ) e. ( S |`t D ) ) |
162 |
152 154 161
|
saliuncl |
|- ( ( ph /\ g : NN --> T ) -> U_ n e. NN ( `' F " ( g ` n ) ) e. ( S |`t D ) ) |
163 |
151 162
|
eqeltrd |
|- ( ( ph /\ g : NN --> T ) -> ( `' F " U_ n e. NN ( g ` n ) ) e. ( S |`t D ) ) |
164 |
149 163
|
jca |
|- ( ( ph /\ g : NN --> T ) -> ( U_ n e. NN ( g ` n ) e. ~P RR /\ ( `' F " U_ n e. NN ( g ` n ) ) e. ( S |`t D ) ) ) |
165 |
|
imaeq2 |
|- ( e = U_ n e. NN ( g ` n ) -> ( `' F " e ) = ( `' F " U_ n e. NN ( g ` n ) ) ) |
166 |
165
|
eleq1d |
|- ( e = U_ n e. NN ( g ` n ) -> ( ( `' F " e ) e. ( S |`t D ) <-> ( `' F " U_ n e. NN ( g ` n ) ) e. ( S |`t D ) ) ) |
167 |
166 4
|
elrab2 |
|- ( U_ n e. NN ( g ` n ) e. T <-> ( U_ n e. NN ( g ` n ) e. ~P RR /\ ( `' F " U_ n e. NN ( g ` n ) ) e. ( S |`t D ) ) ) |
168 |
164 167
|
sylibr |
|- ( ( ph /\ g : NN --> T ) -> U_ n e. NN ( g ` n ) e. T ) |
169 |
8 24 25 134 168
|
issalnnd |
|- ( ph -> T e. SAlg ) |