| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfresal.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 2 |  | smfresal.f |  |-  ( ph -> F e. ( SMblFn ` S ) ) | 
						
							| 3 |  | smfresal.d |  |-  D = dom F | 
						
							| 4 |  | smfresal.t |  |-  T = { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) } | 
						
							| 5 |  | reex |  |-  RR e. _V | 
						
							| 6 | 5 | pwex |  |-  ~P RR e. _V | 
						
							| 7 | 4 6 | rabex2 |  |-  T e. _V | 
						
							| 8 | 7 | a1i |  |-  ( ph -> T e. _V ) | 
						
							| 9 |  | 0elpw |  |-  (/) e. ~P RR | 
						
							| 10 | 9 | a1i |  |-  ( ph -> (/) e. ~P RR ) | 
						
							| 11 |  | ima0 |  |-  ( `' F " (/) ) = (/) | 
						
							| 12 | 11 | a1i |  |-  ( ph -> ( `' F " (/) ) = (/) ) | 
						
							| 13 | 1 | uniexd |  |-  ( ph -> U. S e. _V ) | 
						
							| 14 | 1 2 3 | smfdmss |  |-  ( ph -> D C_ U. S ) | 
						
							| 15 | 13 14 | ssexd |  |-  ( ph -> D e. _V ) | 
						
							| 16 |  | eqid |  |-  ( S |`t D ) = ( S |`t D ) | 
						
							| 17 | 1 15 16 | subsalsal |  |-  ( ph -> ( S |`t D ) e. SAlg ) | 
						
							| 18 | 17 | 0sald |  |-  ( ph -> (/) e. ( S |`t D ) ) | 
						
							| 19 | 12 18 | eqeltrd |  |-  ( ph -> ( `' F " (/) ) e. ( S |`t D ) ) | 
						
							| 20 | 10 19 | jca |  |-  ( ph -> ( (/) e. ~P RR /\ ( `' F " (/) ) e. ( S |`t D ) ) ) | 
						
							| 21 |  | imaeq2 |  |-  ( e = (/) -> ( `' F " e ) = ( `' F " (/) ) ) | 
						
							| 22 | 21 | eleq1d |  |-  ( e = (/) -> ( ( `' F " e ) e. ( S |`t D ) <-> ( `' F " (/) ) e. ( S |`t D ) ) ) | 
						
							| 23 | 22 4 | elrab2 |  |-  ( (/) e. T <-> ( (/) e. ~P RR /\ ( `' F " (/) ) e. ( S |`t D ) ) ) | 
						
							| 24 | 20 23 | sylibr |  |-  ( ph -> (/) e. T ) | 
						
							| 25 |  | eqid |  |-  U. T = U. T | 
						
							| 26 |  | nfv |  |-  F/ y ph | 
						
							| 27 |  | nfcv |  |-  F/_ e y | 
						
							| 28 |  | nfrab1 |  |-  F/_ e { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) } | 
						
							| 29 | 4 28 | nfcxfr |  |-  F/_ e T | 
						
							| 30 | 27 29 | eluni2f |  |-  ( y e. U. T <-> E. e e. T y e. e ) | 
						
							| 31 | 30 | biimpi |  |-  ( y e. U. T -> E. e e. T y e. e ) | 
						
							| 32 | 31 | adantl |  |-  ( ( ph /\ y e. U. T ) -> E. e e. T y e. e ) | 
						
							| 33 |  | nfv |  |-  F/ e ph | 
						
							| 34 | 29 | nfuni |  |-  F/_ e U. T | 
						
							| 35 | 27 34 | nfel |  |-  F/ e y e. U. T | 
						
							| 36 | 33 35 | nfan |  |-  F/ e ( ph /\ y e. U. T ) | 
						
							| 37 | 27 | nfel1 |  |-  F/ e y e. RR | 
						
							| 38 | 4 | eleq2i |  |-  ( e e. T <-> e e. { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) } ) | 
						
							| 39 | 38 | biimpi |  |-  ( e e. T -> e e. { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) } ) | 
						
							| 40 |  | rabidim1 |  |-  ( e e. { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) } -> e e. ~P RR ) | 
						
							| 41 | 39 40 | syl |  |-  ( e e. T -> e e. ~P RR ) | 
						
							| 42 |  | elpwi |  |-  ( e e. ~P RR -> e C_ RR ) | 
						
							| 43 | 41 42 | syl |  |-  ( e e. T -> e C_ RR ) | 
						
							| 44 | 43 | adantr |  |-  ( ( e e. T /\ y e. e ) -> e C_ RR ) | 
						
							| 45 |  | simpr |  |-  ( ( e e. T /\ y e. e ) -> y e. e ) | 
						
							| 46 | 44 45 | sseldd |  |-  ( ( e e. T /\ y e. e ) -> y e. RR ) | 
						
							| 47 | 46 | ex |  |-  ( e e. T -> ( y e. e -> y e. RR ) ) | 
						
							| 48 | 47 | a1i |  |-  ( ( ph /\ y e. U. T ) -> ( e e. T -> ( y e. e -> y e. RR ) ) ) | 
						
							| 49 | 36 37 48 | rexlimd |  |-  ( ( ph /\ y e. U. T ) -> ( E. e e. T y e. e -> y e. RR ) ) | 
						
							| 50 | 32 49 | mpd |  |-  ( ( ph /\ y e. U. T ) -> y e. RR ) | 
						
							| 51 | 50 | ex |  |-  ( ph -> ( y e. U. T -> y e. RR ) ) | 
						
							| 52 |  | ovexd |  |-  ( ph -> ( ( y - 1 ) (,) ( y + 1 ) ) e. _V ) | 
						
							| 53 |  | ioossre |  |-  ( ( y - 1 ) (,) ( y + 1 ) ) C_ RR | 
						
							| 54 | 53 | a1i |  |-  ( ph -> ( ( y - 1 ) (,) ( y + 1 ) ) C_ RR ) | 
						
							| 55 | 52 54 | elpwd |  |-  ( ph -> ( ( y - 1 ) (,) ( y + 1 ) ) e. ~P RR ) | 
						
							| 56 | 55 | adantr |  |-  ( ( ph /\ y e. RR ) -> ( ( y - 1 ) (,) ( y + 1 ) ) e. ~P RR ) | 
						
							| 57 | 1 2 3 | smff |  |-  ( ph -> F : D --> RR ) | 
						
							| 58 | 57 | ffnd |  |-  ( ph -> F Fn D ) | 
						
							| 59 |  | fncnvima2 |  |-  ( F Fn D -> ( `' F " ( ( y - 1 ) (,) ( y + 1 ) ) ) = { x e. D | ( F ` x ) e. ( ( y - 1 ) (,) ( y + 1 ) ) } ) | 
						
							| 60 | 58 59 | syl |  |-  ( ph -> ( `' F " ( ( y - 1 ) (,) ( y + 1 ) ) ) = { x e. D | ( F ` x ) e. ( ( y - 1 ) (,) ( y + 1 ) ) } ) | 
						
							| 61 | 60 | adantr |  |-  ( ( ph /\ y e. RR ) -> ( `' F " ( ( y - 1 ) (,) ( y + 1 ) ) ) = { x e. D | ( F ` x ) e. ( ( y - 1 ) (,) ( y + 1 ) ) } ) | 
						
							| 62 |  | nfv |  |-  F/ x ( ph /\ y e. RR ) | 
						
							| 63 | 1 | adantr |  |-  ( ( ph /\ y e. RR ) -> S e. SAlg ) | 
						
							| 64 | 15 | adantr |  |-  ( ( ph /\ y e. RR ) -> D e. _V ) | 
						
							| 65 | 57 | adantr |  |-  ( ( ph /\ x e. D ) -> F : D --> RR ) | 
						
							| 66 |  | simpr |  |-  ( ( ph /\ x e. D ) -> x e. D ) | 
						
							| 67 | 65 66 | ffvelcdmd |  |-  ( ( ph /\ x e. D ) -> ( F ` x ) e. RR ) | 
						
							| 68 | 67 | adantlr |  |-  ( ( ( ph /\ y e. RR ) /\ x e. D ) -> ( F ` x ) e. RR ) | 
						
							| 69 | 57 | feqmptd |  |-  ( ph -> F = ( x e. D |-> ( F ` x ) ) ) | 
						
							| 70 | 69 | eqcomd |  |-  ( ph -> ( x e. D |-> ( F ` x ) ) = F ) | 
						
							| 71 | 70 2 | eqeltrd |  |-  ( ph -> ( x e. D |-> ( F ` x ) ) e. ( SMblFn ` S ) ) | 
						
							| 72 | 71 | adantr |  |-  ( ( ph /\ y e. RR ) -> ( x e. D |-> ( F ` x ) ) e. ( SMblFn ` S ) ) | 
						
							| 73 |  | peano2rem |  |-  ( y e. RR -> ( y - 1 ) e. RR ) | 
						
							| 74 | 73 | rexrd |  |-  ( y e. RR -> ( y - 1 ) e. RR* ) | 
						
							| 75 | 74 | adantl |  |-  ( ( ph /\ y e. RR ) -> ( y - 1 ) e. RR* ) | 
						
							| 76 |  | peano2re |  |-  ( y e. RR -> ( y + 1 ) e. RR ) | 
						
							| 77 | 76 | rexrd |  |-  ( y e. RR -> ( y + 1 ) e. RR* ) | 
						
							| 78 | 77 | adantl |  |-  ( ( ph /\ y e. RR ) -> ( y + 1 ) e. RR* ) | 
						
							| 79 | 62 63 64 68 72 75 78 | smfpimioompt |  |-  ( ( ph /\ y e. RR ) -> { x e. D | ( F ` x ) e. ( ( y - 1 ) (,) ( y + 1 ) ) } e. ( S |`t D ) ) | 
						
							| 80 | 61 79 | eqeltrd |  |-  ( ( ph /\ y e. RR ) -> ( `' F " ( ( y - 1 ) (,) ( y + 1 ) ) ) e. ( S |`t D ) ) | 
						
							| 81 | 56 80 | jca |  |-  ( ( ph /\ y e. RR ) -> ( ( ( y - 1 ) (,) ( y + 1 ) ) e. ~P RR /\ ( `' F " ( ( y - 1 ) (,) ( y + 1 ) ) ) e. ( S |`t D ) ) ) | 
						
							| 82 |  | imaeq2 |  |-  ( e = ( ( y - 1 ) (,) ( y + 1 ) ) -> ( `' F " e ) = ( `' F " ( ( y - 1 ) (,) ( y + 1 ) ) ) ) | 
						
							| 83 | 82 | eleq1d |  |-  ( e = ( ( y - 1 ) (,) ( y + 1 ) ) -> ( ( `' F " e ) e. ( S |`t D ) <-> ( `' F " ( ( y - 1 ) (,) ( y + 1 ) ) ) e. ( S |`t D ) ) ) | 
						
							| 84 | 83 4 | elrab2 |  |-  ( ( ( y - 1 ) (,) ( y + 1 ) ) e. T <-> ( ( ( y - 1 ) (,) ( y + 1 ) ) e. ~P RR /\ ( `' F " ( ( y - 1 ) (,) ( y + 1 ) ) ) e. ( S |`t D ) ) ) | 
						
							| 85 | 81 84 | sylibr |  |-  ( ( ph /\ y e. RR ) -> ( ( y - 1 ) (,) ( y + 1 ) ) e. T ) | 
						
							| 86 |  | id |  |-  ( y e. RR -> y e. RR ) | 
						
							| 87 |  | ltm1 |  |-  ( y e. RR -> ( y - 1 ) < y ) | 
						
							| 88 |  | ltp1 |  |-  ( y e. RR -> y < ( y + 1 ) ) | 
						
							| 89 | 74 77 86 87 88 | eliood |  |-  ( y e. RR -> y e. ( ( y - 1 ) (,) ( y + 1 ) ) ) | 
						
							| 90 | 89 | adantl |  |-  ( ( ph /\ y e. RR ) -> y e. ( ( y - 1 ) (,) ( y + 1 ) ) ) | 
						
							| 91 |  | nfv |  |-  F/ e y e. ( ( y - 1 ) (,) ( y + 1 ) ) | 
						
							| 92 |  | nfcv |  |-  F/_ e ( ( y - 1 ) (,) ( y + 1 ) ) | 
						
							| 93 |  | eleq2 |  |-  ( e = ( ( y - 1 ) (,) ( y + 1 ) ) -> ( y e. e <-> y e. ( ( y - 1 ) (,) ( y + 1 ) ) ) ) | 
						
							| 94 | 91 92 29 93 | rspcef |  |-  ( ( ( ( y - 1 ) (,) ( y + 1 ) ) e. T /\ y e. ( ( y - 1 ) (,) ( y + 1 ) ) ) -> E. e e. T y e. e ) | 
						
							| 95 | 85 90 94 | syl2anc |  |-  ( ( ph /\ y e. RR ) -> E. e e. T y e. e ) | 
						
							| 96 | 95 30 | sylibr |  |-  ( ( ph /\ y e. RR ) -> y e. U. T ) | 
						
							| 97 | 96 | ex |  |-  ( ph -> ( y e. RR -> y e. U. T ) ) | 
						
							| 98 | 51 97 | impbid |  |-  ( ph -> ( y e. U. T <-> y e. RR ) ) | 
						
							| 99 | 26 98 | alrimi |  |-  ( ph -> A. y ( y e. U. T <-> y e. RR ) ) | 
						
							| 100 |  | dfcleq |  |-  ( U. T = RR <-> A. y ( y e. U. T <-> y e. RR ) ) | 
						
							| 101 | 99 100 | sylibr |  |-  ( ph -> U. T = RR ) | 
						
							| 102 | 101 | difeq1d |  |-  ( ph -> ( U. T \ x ) = ( RR \ x ) ) | 
						
							| 103 | 102 | adantr |  |-  ( ( ph /\ x e. T ) -> ( U. T \ x ) = ( RR \ x ) ) | 
						
							| 104 |  | difss |  |-  ( RR \ x ) C_ RR | 
						
							| 105 | 5 104 | ssexi |  |-  ( RR \ x ) e. _V | 
						
							| 106 |  | elpwg |  |-  ( ( RR \ x ) e. _V -> ( ( RR \ x ) e. ~P RR <-> ( RR \ x ) C_ RR ) ) | 
						
							| 107 | 105 106 | ax-mp |  |-  ( ( RR \ x ) e. ~P RR <-> ( RR \ x ) C_ RR ) | 
						
							| 108 | 104 107 | mpbir |  |-  ( RR \ x ) e. ~P RR | 
						
							| 109 | 108 | a1i |  |-  ( ( ph /\ x e. T ) -> ( RR \ x ) e. ~P RR ) | 
						
							| 110 | 57 | ffund |  |-  ( ph -> Fun F ) | 
						
							| 111 |  | difpreima |  |-  ( Fun F -> ( `' F " ( RR \ x ) ) = ( ( `' F " RR ) \ ( `' F " x ) ) ) | 
						
							| 112 | 110 111 | syl |  |-  ( ph -> ( `' F " ( RR \ x ) ) = ( ( `' F " RR ) \ ( `' F " x ) ) ) | 
						
							| 113 |  | fimacnv |  |-  ( F : D --> RR -> ( `' F " RR ) = D ) | 
						
							| 114 | 57 113 | syl |  |-  ( ph -> ( `' F " RR ) = D ) | 
						
							| 115 | 1 14 | restuni4 |  |-  ( ph -> U. ( S |`t D ) = D ) | 
						
							| 116 | 114 115 | eqtr4d |  |-  ( ph -> ( `' F " RR ) = U. ( S |`t D ) ) | 
						
							| 117 | 116 | difeq1d |  |-  ( ph -> ( ( `' F " RR ) \ ( `' F " x ) ) = ( U. ( S |`t D ) \ ( `' F " x ) ) ) | 
						
							| 118 | 112 117 | eqtrd |  |-  ( ph -> ( `' F " ( RR \ x ) ) = ( U. ( S |`t D ) \ ( `' F " x ) ) ) | 
						
							| 119 | 118 | adantr |  |-  ( ( ph /\ x e. T ) -> ( `' F " ( RR \ x ) ) = ( U. ( S |`t D ) \ ( `' F " x ) ) ) | 
						
							| 120 | 17 | adantr |  |-  ( ( ph /\ x e. T ) -> ( S |`t D ) e. SAlg ) | 
						
							| 121 |  | imaeq2 |  |-  ( e = x -> ( `' F " e ) = ( `' F " x ) ) | 
						
							| 122 | 121 | eleq1d |  |-  ( e = x -> ( ( `' F " e ) e. ( S |`t D ) <-> ( `' F " x ) e. ( S |`t D ) ) ) | 
						
							| 123 | 122 4 | elrab2 |  |-  ( x e. T <-> ( x e. ~P RR /\ ( `' F " x ) e. ( S |`t D ) ) ) | 
						
							| 124 | 123 | biimpi |  |-  ( x e. T -> ( x e. ~P RR /\ ( `' F " x ) e. ( S |`t D ) ) ) | 
						
							| 125 | 124 | simprd |  |-  ( x e. T -> ( `' F " x ) e. ( S |`t D ) ) | 
						
							| 126 | 125 | adantl |  |-  ( ( ph /\ x e. T ) -> ( `' F " x ) e. ( S |`t D ) ) | 
						
							| 127 | 120 126 | saldifcld |  |-  ( ( ph /\ x e. T ) -> ( U. ( S |`t D ) \ ( `' F " x ) ) e. ( S |`t D ) ) | 
						
							| 128 | 119 127 | eqeltrd |  |-  ( ( ph /\ x e. T ) -> ( `' F " ( RR \ x ) ) e. ( S |`t D ) ) | 
						
							| 129 | 109 128 | jca |  |-  ( ( ph /\ x e. T ) -> ( ( RR \ x ) e. ~P RR /\ ( `' F " ( RR \ x ) ) e. ( S |`t D ) ) ) | 
						
							| 130 |  | imaeq2 |  |-  ( e = ( RR \ x ) -> ( `' F " e ) = ( `' F " ( RR \ x ) ) ) | 
						
							| 131 | 130 | eleq1d |  |-  ( e = ( RR \ x ) -> ( ( `' F " e ) e. ( S |`t D ) <-> ( `' F " ( RR \ x ) ) e. ( S |`t D ) ) ) | 
						
							| 132 | 131 4 | elrab2 |  |-  ( ( RR \ x ) e. T <-> ( ( RR \ x ) e. ~P RR /\ ( `' F " ( RR \ x ) ) e. ( S |`t D ) ) ) | 
						
							| 133 | 129 132 | sylibr |  |-  ( ( ph /\ x e. T ) -> ( RR \ x ) e. T ) | 
						
							| 134 | 103 133 | eqeltrd |  |-  ( ( ph /\ x e. T ) -> ( U. T \ x ) e. T ) | 
						
							| 135 |  | nnex |  |-  NN e. _V | 
						
							| 136 |  | fvex |  |-  ( g ` n ) e. _V | 
						
							| 137 | 135 136 | iunex |  |-  U_ n e. NN ( g ` n ) e. _V | 
						
							| 138 | 137 | a1i |  |-  ( g : NN --> T -> U_ n e. NN ( g ` n ) e. _V ) | 
						
							| 139 |  | ffvelcdm |  |-  ( ( g : NN --> T /\ n e. NN ) -> ( g ` n ) e. T ) | 
						
							| 140 | 4 | eleq2i |  |-  ( ( g ` n ) e. T <-> ( g ` n ) e. { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) } ) | 
						
							| 141 | 140 | biimpi |  |-  ( ( g ` n ) e. T -> ( g ` n ) e. { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) } ) | 
						
							| 142 |  | elrabi |  |-  ( ( g ` n ) e. { e e. ~P RR | ( `' F " e ) e. ( S |`t D ) } -> ( g ` n ) e. ~P RR ) | 
						
							| 143 |  | elpwi |  |-  ( ( g ` n ) e. ~P RR -> ( g ` n ) C_ RR ) | 
						
							| 144 | 139 141 142 143 | 4syl |  |-  ( ( g : NN --> T /\ n e. NN ) -> ( g ` n ) C_ RR ) | 
						
							| 145 | 144 | iunssd |  |-  ( g : NN --> T -> U_ n e. NN ( g ` n ) C_ RR ) | 
						
							| 146 | 138 145 | elpwd |  |-  ( g : NN --> T -> U_ n e. NN ( g ` n ) e. ~P RR ) | 
						
							| 147 | 146 | adantl |  |-  ( ( ph /\ g : NN --> T ) -> U_ n e. NN ( g ` n ) e. ~P RR ) | 
						
							| 148 |  | imaiun |  |-  ( `' F " U_ n e. NN ( g ` n ) ) = U_ n e. NN ( `' F " ( g ` n ) ) | 
						
							| 149 | 148 | a1i |  |-  ( ( ph /\ g : NN --> T ) -> ( `' F " U_ n e. NN ( g ` n ) ) = U_ n e. NN ( `' F " ( g ` n ) ) ) | 
						
							| 150 | 17 | adantr |  |-  ( ( ph /\ g : NN --> T ) -> ( S |`t D ) e. SAlg ) | 
						
							| 151 |  | nnct |  |-  NN ~<_ _om | 
						
							| 152 | 151 | a1i |  |-  ( ( ph /\ g : NN --> T ) -> NN ~<_ _om ) | 
						
							| 153 |  | imaeq2 |  |-  ( e = ( g ` n ) -> ( `' F " e ) = ( `' F " ( g ` n ) ) ) | 
						
							| 154 | 153 | eleq1d |  |-  ( e = ( g ` n ) -> ( ( `' F " e ) e. ( S |`t D ) <-> ( `' F " ( g ` n ) ) e. ( S |`t D ) ) ) | 
						
							| 155 | 154 4 | elrab2 |  |-  ( ( g ` n ) e. T <-> ( ( g ` n ) e. ~P RR /\ ( `' F " ( g ` n ) ) e. ( S |`t D ) ) ) | 
						
							| 156 | 155 | biimpi |  |-  ( ( g ` n ) e. T -> ( ( g ` n ) e. ~P RR /\ ( `' F " ( g ` n ) ) e. ( S |`t D ) ) ) | 
						
							| 157 | 156 | simprd |  |-  ( ( g ` n ) e. T -> ( `' F " ( g ` n ) ) e. ( S |`t D ) ) | 
						
							| 158 | 139 157 | syl |  |-  ( ( g : NN --> T /\ n e. NN ) -> ( `' F " ( g ` n ) ) e. ( S |`t D ) ) | 
						
							| 159 | 158 | adantll |  |-  ( ( ( ph /\ g : NN --> T ) /\ n e. NN ) -> ( `' F " ( g ` n ) ) e. ( S |`t D ) ) | 
						
							| 160 | 150 152 159 | saliuncl |  |-  ( ( ph /\ g : NN --> T ) -> U_ n e. NN ( `' F " ( g ` n ) ) e. ( S |`t D ) ) | 
						
							| 161 | 149 160 | eqeltrd |  |-  ( ( ph /\ g : NN --> T ) -> ( `' F " U_ n e. NN ( g ` n ) ) e. ( S |`t D ) ) | 
						
							| 162 | 147 161 | jca |  |-  ( ( ph /\ g : NN --> T ) -> ( U_ n e. NN ( g ` n ) e. ~P RR /\ ( `' F " U_ n e. NN ( g ` n ) ) e. ( S |`t D ) ) ) | 
						
							| 163 |  | imaeq2 |  |-  ( e = U_ n e. NN ( g ` n ) -> ( `' F " e ) = ( `' F " U_ n e. NN ( g ` n ) ) ) | 
						
							| 164 | 163 | eleq1d |  |-  ( e = U_ n e. NN ( g ` n ) -> ( ( `' F " e ) e. ( S |`t D ) <-> ( `' F " U_ n e. NN ( g ` n ) ) e. ( S |`t D ) ) ) | 
						
							| 165 | 164 4 | elrab2 |  |-  ( U_ n e. NN ( g ` n ) e. T <-> ( U_ n e. NN ( g ` n ) e. ~P RR /\ ( `' F " U_ n e. NN ( g ` n ) ) e. ( S |`t D ) ) ) | 
						
							| 166 | 162 165 | sylibr |  |-  ( ( ph /\ g : NN --> T ) -> U_ n e. NN ( g ` n ) e. T ) | 
						
							| 167 | 8 24 25 134 166 | issalnnd |  |-  ( ph -> T e. SAlg ) |