| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfrec.x |  |-  F/ x ph | 
						
							| 2 |  | smfrec.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 3 |  | smfrec.a |  |-  ( ph -> A e. V ) | 
						
							| 4 |  | smfrec.b |  |-  ( ( ph /\ x e. A ) -> B e. RR ) | 
						
							| 5 |  | smfrec.m |  |-  ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) | 
						
							| 6 |  | smfrec.e |  |-  C = { x e. A | B =/= 0 } | 
						
							| 7 |  | nfv |  |-  F/ a ph | 
						
							| 8 |  | ssrab2 |  |-  { x e. A | B =/= 0 } C_ A | 
						
							| 9 | 6 8 | eqsstri |  |-  C C_ A | 
						
							| 10 |  | eqid |  |-  ( x e. A |-> B ) = ( x e. A |-> B ) | 
						
							| 11 | 1 10 4 | dmmptdf |  |-  ( ph -> dom ( x e. A |-> B ) = A ) | 
						
							| 12 | 11 | eqcomd |  |-  ( ph -> A = dom ( x e. A |-> B ) ) | 
						
							| 13 |  | eqid |  |-  dom ( x e. A |-> B ) = dom ( x e. A |-> B ) | 
						
							| 14 | 2 5 13 | smfdmss |  |-  ( ph -> dom ( x e. A |-> B ) C_ U. S ) | 
						
							| 15 | 12 14 | eqsstrd |  |-  ( ph -> A C_ U. S ) | 
						
							| 16 | 9 15 | sstrid |  |-  ( ph -> C C_ U. S ) | 
						
							| 17 |  | 1red |  |-  ( ( ph /\ x e. C ) -> 1 e. RR ) | 
						
							| 18 | 9 | sseli |  |-  ( x e. C -> x e. A ) | 
						
							| 19 | 18 | adantl |  |-  ( ( ph /\ x e. C ) -> x e. A ) | 
						
							| 20 | 19 4 | syldan |  |-  ( ( ph /\ x e. C ) -> B e. RR ) | 
						
							| 21 | 6 | eleq2i |  |-  ( x e. C <-> x e. { x e. A | B =/= 0 } ) | 
						
							| 22 | 21 | biimpi |  |-  ( x e. C -> x e. { x e. A | B =/= 0 } ) | 
						
							| 23 |  | rabidim2 |  |-  ( x e. { x e. A | B =/= 0 } -> B =/= 0 ) | 
						
							| 24 | 22 23 | syl |  |-  ( x e. C -> B =/= 0 ) | 
						
							| 25 | 24 | adantl |  |-  ( ( ph /\ x e. C ) -> B =/= 0 ) | 
						
							| 26 | 17 20 25 | redivcld |  |-  ( ( ph /\ x e. C ) -> ( 1 / B ) e. RR ) | 
						
							| 27 |  | nfv |  |-  F/ x a e. RR | 
						
							| 28 | 1 27 | nfan |  |-  F/ x ( ph /\ a e. RR ) | 
						
							| 29 |  | nfv |  |-  F/ x 0 < a | 
						
							| 30 | 28 29 | nfan |  |-  F/ x ( ( ph /\ a e. RR ) /\ 0 < a ) | 
						
							| 31 | 20 | ad4ant14 |  |-  ( ( ( ( ph /\ a e. RR ) /\ 0 < a ) /\ x e. C ) -> B e. RR ) | 
						
							| 32 | 24 | adantl |  |-  ( ( ( ( ph /\ a e. RR ) /\ 0 < a ) /\ x e. C ) -> B =/= 0 ) | 
						
							| 33 |  | simpl |  |-  ( ( a e. RR /\ 0 < a ) -> a e. RR ) | 
						
							| 34 |  | simpr |  |-  ( ( a e. RR /\ 0 < a ) -> 0 < a ) | 
						
							| 35 | 33 34 | elrpd |  |-  ( ( a e. RR /\ 0 < a ) -> a e. RR+ ) | 
						
							| 36 | 35 | adantll |  |-  ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> a e. RR+ ) | 
						
							| 37 | 30 31 32 36 | pimrecltpos |  |-  ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> { x e. C | ( 1 / B ) < a } = ( { x e. C | ( 1 / a ) < B } u. { x e. C | B < 0 } ) ) | 
						
							| 38 | 6 3 | rabexd |  |-  ( ph -> C e. _V ) | 
						
							| 39 |  | eqid |  |-  ( S |`t C ) = ( S |`t C ) | 
						
							| 40 | 2 38 39 | subsalsal |  |-  ( ph -> ( S |`t C ) e. SAlg ) | 
						
							| 41 | 40 | ad2antrr |  |-  ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> ( S |`t C ) e. SAlg ) | 
						
							| 42 | 2 | adantr |  |-  ( ( ph /\ a e. RR ) -> S e. SAlg ) | 
						
							| 43 | 42 | adantr |  |-  ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> S e. SAlg ) | 
						
							| 44 | 9 | a1i |  |-  ( ph -> C C_ A ) | 
						
							| 45 | 2 5 44 | sssmfmpt |  |-  ( ph -> ( x e. C |-> B ) e. ( SMblFn ` S ) ) | 
						
							| 46 | 45 | adantr |  |-  ( ( ph /\ a e. RR ) -> ( x e. C |-> B ) e. ( SMblFn ` S ) ) | 
						
							| 47 | 46 | adantr |  |-  ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> ( x e. C |-> B ) e. ( SMblFn ` S ) ) | 
						
							| 48 | 35 | rprecred |  |-  ( ( a e. RR /\ 0 < a ) -> ( 1 / a ) e. RR ) | 
						
							| 49 | 48 | adantll |  |-  ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> ( 1 / a ) e. RR ) | 
						
							| 50 | 30 43 31 47 49 | smfpimgtmpt |  |-  ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> { x e. C | ( 1 / a ) < B } e. ( S |`t C ) ) | 
						
							| 51 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 52 | 1 2 20 45 51 | smfpimltmpt |  |-  ( ph -> { x e. C | B < 0 } e. ( S |`t C ) ) | 
						
							| 53 | 52 | ad2antrr |  |-  ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> { x e. C | B < 0 } e. ( S |`t C ) ) | 
						
							| 54 | 41 50 53 | saluncld |  |-  ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> ( { x e. C | ( 1 / a ) < B } u. { x e. C | B < 0 } ) e. ( S |`t C ) ) | 
						
							| 55 | 37 54 | eqeltrd |  |-  ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> { x e. C | ( 1 / B ) < a } e. ( S |`t C ) ) | 
						
							| 56 |  | nfv |  |-  F/ x a = 0 | 
						
							| 57 | 1 56 | nfan |  |-  F/ x ( ph /\ a = 0 ) | 
						
							| 58 |  | breq2 |  |-  ( a = 0 -> ( ( 1 / B ) < a <-> ( 1 / B ) < 0 ) ) | 
						
							| 59 | 58 | ad2antlr |  |-  ( ( ( ph /\ a = 0 ) /\ x e. C ) -> ( ( 1 / B ) < a <-> ( 1 / B ) < 0 ) ) | 
						
							| 60 | 20 25 | reclt0 |  |-  ( ( ph /\ x e. C ) -> ( B < 0 <-> ( 1 / B ) < 0 ) ) | 
						
							| 61 | 60 | bicomd |  |-  ( ( ph /\ x e. C ) -> ( ( 1 / B ) < 0 <-> B < 0 ) ) | 
						
							| 62 | 61 | adantlr |  |-  ( ( ( ph /\ a = 0 ) /\ x e. C ) -> ( ( 1 / B ) < 0 <-> B < 0 ) ) | 
						
							| 63 | 59 62 | bitrd |  |-  ( ( ( ph /\ a = 0 ) /\ x e. C ) -> ( ( 1 / B ) < a <-> B < 0 ) ) | 
						
							| 64 | 57 63 | rabbida |  |-  ( ( ph /\ a = 0 ) -> { x e. C | ( 1 / B ) < a } = { x e. C | B < 0 } ) | 
						
							| 65 | 52 | adantr |  |-  ( ( ph /\ a = 0 ) -> { x e. C | B < 0 } e. ( S |`t C ) ) | 
						
							| 66 | 64 65 | eqeltrd |  |-  ( ( ph /\ a = 0 ) -> { x e. C | ( 1 / B ) < a } e. ( S |`t C ) ) | 
						
							| 67 | 66 | ad4ant14 |  |-  ( ( ( ( ph /\ a e. RR ) /\ -. 0 < a ) /\ a = 0 ) -> { x e. C | ( 1 / B ) < a } e. ( S |`t C ) ) | 
						
							| 68 |  | simpll |  |-  ( ( ( ( ph /\ a e. RR ) /\ -. 0 < a ) /\ -. a = 0 ) -> ( ph /\ a e. RR ) ) | 
						
							| 69 |  | simpll |  |-  ( ( ( a e. RR /\ -. 0 < a ) /\ -. a = 0 ) -> a e. RR ) | 
						
							| 70 |  | 0red |  |-  ( ( ( a e. RR /\ -. 0 < a ) /\ -. a = 0 ) -> 0 e. RR ) | 
						
							| 71 |  | neqne |  |-  ( -. a = 0 -> a =/= 0 ) | 
						
							| 72 | 71 | adantl |  |-  ( ( ( a e. RR /\ -. 0 < a ) /\ -. a = 0 ) -> a =/= 0 ) | 
						
							| 73 |  | simplr |  |-  ( ( ( a e. RR /\ -. 0 < a ) /\ -. a = 0 ) -> -. 0 < a ) | 
						
							| 74 | 69 70 72 73 | lttri5d |  |-  ( ( ( a e. RR /\ -. 0 < a ) /\ -. a = 0 ) -> a < 0 ) | 
						
							| 75 | 74 | adantlll |  |-  ( ( ( ( ph /\ a e. RR ) /\ -. 0 < a ) /\ -. a = 0 ) -> a < 0 ) | 
						
							| 76 |  | nfv |  |-  F/ x a < 0 | 
						
							| 77 | 28 76 | nfan |  |-  F/ x ( ( ph /\ a e. RR ) /\ a < 0 ) | 
						
							| 78 | 4 | adantlr |  |-  ( ( ( ph /\ a e. RR ) /\ x e. A ) -> B e. RR ) | 
						
							| 79 | 18 78 | sylan2 |  |-  ( ( ( ph /\ a e. RR ) /\ x e. C ) -> B e. RR ) | 
						
							| 80 | 79 | adantlr |  |-  ( ( ( ( ph /\ a e. RR ) /\ a < 0 ) /\ x e. C ) -> B e. RR ) | 
						
							| 81 | 24 | adantl |  |-  ( ( ( ( ph /\ a e. RR ) /\ a < 0 ) /\ x e. C ) -> B =/= 0 ) | 
						
							| 82 |  | simpr |  |-  ( ( ph /\ a e. RR ) -> a e. RR ) | 
						
							| 83 | 82 | adantr |  |-  ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> a e. RR ) | 
						
							| 84 |  | simpr |  |-  ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> a < 0 ) | 
						
							| 85 | 77 80 81 83 84 | pimrecltneg |  |-  ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> { x e. C | ( 1 / B ) < a } = { x e. C | B e. ( ( 1 / a ) (,) 0 ) } ) | 
						
							| 86 | 42 | adantr |  |-  ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> S e. SAlg ) | 
						
							| 87 | 38 | ad2antrr |  |-  ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> C e. _V ) | 
						
							| 88 | 46 | adantr |  |-  ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> ( x e. C |-> B ) e. ( SMblFn ` S ) ) | 
						
							| 89 |  | 1red |  |-  ( ( a e. RR /\ a < 0 ) -> 1 e. RR ) | 
						
							| 90 |  | simpl |  |-  ( ( a e. RR /\ a < 0 ) -> a e. RR ) | 
						
							| 91 |  | lt0ne0 |  |-  ( ( a e. RR /\ a < 0 ) -> a =/= 0 ) | 
						
							| 92 | 89 90 91 | redivcld |  |-  ( ( a e. RR /\ a < 0 ) -> ( 1 / a ) e. RR ) | 
						
							| 93 | 92 | adantll |  |-  ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> ( 1 / a ) e. RR ) | 
						
							| 94 | 93 | rexrd |  |-  ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> ( 1 / a ) e. RR* ) | 
						
							| 95 | 51 | ad2antrr |  |-  ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> 0 e. RR ) | 
						
							| 96 | 95 | rexrd |  |-  ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> 0 e. RR* ) | 
						
							| 97 | 77 86 87 80 88 94 96 | smfpimioompt |  |-  ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> { x e. C | B e. ( ( 1 / a ) (,) 0 ) } e. ( S |`t C ) ) | 
						
							| 98 | 85 97 | eqeltrd |  |-  ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> { x e. C | ( 1 / B ) < a } e. ( S |`t C ) ) | 
						
							| 99 | 68 75 98 | syl2anc |  |-  ( ( ( ( ph /\ a e. RR ) /\ -. 0 < a ) /\ -. a = 0 ) -> { x e. C | ( 1 / B ) < a } e. ( S |`t C ) ) | 
						
							| 100 | 67 99 | pm2.61dan |  |-  ( ( ( ph /\ a e. RR ) /\ -. 0 < a ) -> { x e. C | ( 1 / B ) < a } e. ( S |`t C ) ) | 
						
							| 101 | 55 100 | pm2.61dan |  |-  ( ( ph /\ a e. RR ) -> { x e. C | ( 1 / B ) < a } e. ( S |`t C ) ) | 
						
							| 102 | 1 7 2 16 26 101 | issmfdmpt |  |-  ( ph -> ( x e. C |-> ( 1 / B ) ) e. ( SMblFn ` S ) ) |