Step |
Hyp |
Ref |
Expression |
1 |
|
smfrec.x |
|- F/ x ph |
2 |
|
smfrec.s |
|- ( ph -> S e. SAlg ) |
3 |
|
smfrec.a |
|- ( ph -> A e. V ) |
4 |
|
smfrec.b |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
5 |
|
smfrec.m |
|- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) |
6 |
|
smfrec.e |
|- C = { x e. A | B =/= 0 } |
7 |
|
nfv |
|- F/ a ph |
8 |
|
ssrab2 |
|- { x e. A | B =/= 0 } C_ A |
9 |
6 8
|
eqsstri |
|- C C_ A |
10 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
11 |
1 10 4
|
dmmptdf |
|- ( ph -> dom ( x e. A |-> B ) = A ) |
12 |
11
|
eqcomd |
|- ( ph -> A = dom ( x e. A |-> B ) ) |
13 |
|
eqid |
|- dom ( x e. A |-> B ) = dom ( x e. A |-> B ) |
14 |
2 5 13
|
smfdmss |
|- ( ph -> dom ( x e. A |-> B ) C_ U. S ) |
15 |
12 14
|
eqsstrd |
|- ( ph -> A C_ U. S ) |
16 |
9 15
|
sstrid |
|- ( ph -> C C_ U. S ) |
17 |
|
1red |
|- ( ( ph /\ x e. C ) -> 1 e. RR ) |
18 |
9
|
sseli |
|- ( x e. C -> x e. A ) |
19 |
18
|
adantl |
|- ( ( ph /\ x e. C ) -> x e. A ) |
20 |
19 4
|
syldan |
|- ( ( ph /\ x e. C ) -> B e. RR ) |
21 |
6
|
eleq2i |
|- ( x e. C <-> x e. { x e. A | B =/= 0 } ) |
22 |
21
|
biimpi |
|- ( x e. C -> x e. { x e. A | B =/= 0 } ) |
23 |
|
rabidim2 |
|- ( x e. { x e. A | B =/= 0 } -> B =/= 0 ) |
24 |
22 23
|
syl |
|- ( x e. C -> B =/= 0 ) |
25 |
24
|
adantl |
|- ( ( ph /\ x e. C ) -> B =/= 0 ) |
26 |
17 20 25
|
redivcld |
|- ( ( ph /\ x e. C ) -> ( 1 / B ) e. RR ) |
27 |
|
nfv |
|- F/ x a e. RR |
28 |
1 27
|
nfan |
|- F/ x ( ph /\ a e. RR ) |
29 |
|
nfv |
|- F/ x 0 < a |
30 |
28 29
|
nfan |
|- F/ x ( ( ph /\ a e. RR ) /\ 0 < a ) |
31 |
20
|
ad4ant14 |
|- ( ( ( ( ph /\ a e. RR ) /\ 0 < a ) /\ x e. C ) -> B e. RR ) |
32 |
24
|
adantl |
|- ( ( ( ( ph /\ a e. RR ) /\ 0 < a ) /\ x e. C ) -> B =/= 0 ) |
33 |
|
simpl |
|- ( ( a e. RR /\ 0 < a ) -> a e. RR ) |
34 |
|
simpr |
|- ( ( a e. RR /\ 0 < a ) -> 0 < a ) |
35 |
33 34
|
elrpd |
|- ( ( a e. RR /\ 0 < a ) -> a e. RR+ ) |
36 |
35
|
adantll |
|- ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> a e. RR+ ) |
37 |
30 31 32 36
|
pimrecltpos |
|- ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> { x e. C | ( 1 / B ) < a } = ( { x e. C | ( 1 / a ) < B } u. { x e. C | B < 0 } ) ) |
38 |
6 3
|
rabexd |
|- ( ph -> C e. _V ) |
39 |
|
eqid |
|- ( S |`t C ) = ( S |`t C ) |
40 |
2 38 39
|
subsalsal |
|- ( ph -> ( S |`t C ) e. SAlg ) |
41 |
40
|
ad2antrr |
|- ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> ( S |`t C ) e. SAlg ) |
42 |
2
|
adantr |
|- ( ( ph /\ a e. RR ) -> S e. SAlg ) |
43 |
42
|
adantr |
|- ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> S e. SAlg ) |
44 |
9
|
a1i |
|- ( ph -> C C_ A ) |
45 |
2 5 44
|
sssmfmpt |
|- ( ph -> ( x e. C |-> B ) e. ( SMblFn ` S ) ) |
46 |
45
|
adantr |
|- ( ( ph /\ a e. RR ) -> ( x e. C |-> B ) e. ( SMblFn ` S ) ) |
47 |
46
|
adantr |
|- ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> ( x e. C |-> B ) e. ( SMblFn ` S ) ) |
48 |
35
|
rprecred |
|- ( ( a e. RR /\ 0 < a ) -> ( 1 / a ) e. RR ) |
49 |
48
|
adantll |
|- ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> ( 1 / a ) e. RR ) |
50 |
30 43 31 47 49
|
smfpimgtmpt |
|- ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> { x e. C | ( 1 / a ) < B } e. ( S |`t C ) ) |
51 |
|
0red |
|- ( ph -> 0 e. RR ) |
52 |
1 2 20 45 51
|
smfpimltmpt |
|- ( ph -> { x e. C | B < 0 } e. ( S |`t C ) ) |
53 |
52
|
ad2antrr |
|- ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> { x e. C | B < 0 } e. ( S |`t C ) ) |
54 |
41 50 53
|
saluncld |
|- ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> ( { x e. C | ( 1 / a ) < B } u. { x e. C | B < 0 } ) e. ( S |`t C ) ) |
55 |
37 54
|
eqeltrd |
|- ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> { x e. C | ( 1 / B ) < a } e. ( S |`t C ) ) |
56 |
|
nfv |
|- F/ x a = 0 |
57 |
1 56
|
nfan |
|- F/ x ( ph /\ a = 0 ) |
58 |
|
breq2 |
|- ( a = 0 -> ( ( 1 / B ) < a <-> ( 1 / B ) < 0 ) ) |
59 |
58
|
ad2antlr |
|- ( ( ( ph /\ a = 0 ) /\ x e. C ) -> ( ( 1 / B ) < a <-> ( 1 / B ) < 0 ) ) |
60 |
20 25
|
reclt0 |
|- ( ( ph /\ x e. C ) -> ( B < 0 <-> ( 1 / B ) < 0 ) ) |
61 |
60
|
bicomd |
|- ( ( ph /\ x e. C ) -> ( ( 1 / B ) < 0 <-> B < 0 ) ) |
62 |
61
|
adantlr |
|- ( ( ( ph /\ a = 0 ) /\ x e. C ) -> ( ( 1 / B ) < 0 <-> B < 0 ) ) |
63 |
59 62
|
bitrd |
|- ( ( ( ph /\ a = 0 ) /\ x e. C ) -> ( ( 1 / B ) < a <-> B < 0 ) ) |
64 |
57 63
|
rabbida |
|- ( ( ph /\ a = 0 ) -> { x e. C | ( 1 / B ) < a } = { x e. C | B < 0 } ) |
65 |
52
|
adantr |
|- ( ( ph /\ a = 0 ) -> { x e. C | B < 0 } e. ( S |`t C ) ) |
66 |
64 65
|
eqeltrd |
|- ( ( ph /\ a = 0 ) -> { x e. C | ( 1 / B ) < a } e. ( S |`t C ) ) |
67 |
66
|
ad4ant14 |
|- ( ( ( ( ph /\ a e. RR ) /\ -. 0 < a ) /\ a = 0 ) -> { x e. C | ( 1 / B ) < a } e. ( S |`t C ) ) |
68 |
|
simpll |
|- ( ( ( ( ph /\ a e. RR ) /\ -. 0 < a ) /\ -. a = 0 ) -> ( ph /\ a e. RR ) ) |
69 |
|
simpll |
|- ( ( ( a e. RR /\ -. 0 < a ) /\ -. a = 0 ) -> a e. RR ) |
70 |
|
0red |
|- ( ( ( a e. RR /\ -. 0 < a ) /\ -. a = 0 ) -> 0 e. RR ) |
71 |
|
neqne |
|- ( -. a = 0 -> a =/= 0 ) |
72 |
71
|
adantl |
|- ( ( ( a e. RR /\ -. 0 < a ) /\ -. a = 0 ) -> a =/= 0 ) |
73 |
|
simplr |
|- ( ( ( a e. RR /\ -. 0 < a ) /\ -. a = 0 ) -> -. 0 < a ) |
74 |
69 70 72 73
|
lttri5d |
|- ( ( ( a e. RR /\ -. 0 < a ) /\ -. a = 0 ) -> a < 0 ) |
75 |
74
|
adantlll |
|- ( ( ( ( ph /\ a e. RR ) /\ -. 0 < a ) /\ -. a = 0 ) -> a < 0 ) |
76 |
|
nfv |
|- F/ x a < 0 |
77 |
28 76
|
nfan |
|- F/ x ( ( ph /\ a e. RR ) /\ a < 0 ) |
78 |
4
|
adantlr |
|- ( ( ( ph /\ a e. RR ) /\ x e. A ) -> B e. RR ) |
79 |
18 78
|
sylan2 |
|- ( ( ( ph /\ a e. RR ) /\ x e. C ) -> B e. RR ) |
80 |
79
|
adantlr |
|- ( ( ( ( ph /\ a e. RR ) /\ a < 0 ) /\ x e. C ) -> B e. RR ) |
81 |
24
|
adantl |
|- ( ( ( ( ph /\ a e. RR ) /\ a < 0 ) /\ x e. C ) -> B =/= 0 ) |
82 |
|
simpr |
|- ( ( ph /\ a e. RR ) -> a e. RR ) |
83 |
82
|
adantr |
|- ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> a e. RR ) |
84 |
|
simpr |
|- ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> a < 0 ) |
85 |
77 80 81 83 84
|
pimrecltneg |
|- ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> { x e. C | ( 1 / B ) < a } = { x e. C | B e. ( ( 1 / a ) (,) 0 ) } ) |
86 |
42
|
adantr |
|- ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> S e. SAlg ) |
87 |
38
|
ad2antrr |
|- ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> C e. _V ) |
88 |
46
|
adantr |
|- ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> ( x e. C |-> B ) e. ( SMblFn ` S ) ) |
89 |
|
1red |
|- ( ( a e. RR /\ a < 0 ) -> 1 e. RR ) |
90 |
|
simpl |
|- ( ( a e. RR /\ a < 0 ) -> a e. RR ) |
91 |
|
lt0ne0 |
|- ( ( a e. RR /\ a < 0 ) -> a =/= 0 ) |
92 |
89 90 91
|
redivcld |
|- ( ( a e. RR /\ a < 0 ) -> ( 1 / a ) e. RR ) |
93 |
92
|
adantll |
|- ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> ( 1 / a ) e. RR ) |
94 |
93
|
rexrd |
|- ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> ( 1 / a ) e. RR* ) |
95 |
51
|
ad2antrr |
|- ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> 0 e. RR ) |
96 |
95
|
rexrd |
|- ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> 0 e. RR* ) |
97 |
77 86 87 80 88 94 96
|
smfpimioompt |
|- ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> { x e. C | B e. ( ( 1 / a ) (,) 0 ) } e. ( S |`t C ) ) |
98 |
85 97
|
eqeltrd |
|- ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> { x e. C | ( 1 / B ) < a } e. ( S |`t C ) ) |
99 |
68 75 98
|
syl2anc |
|- ( ( ( ( ph /\ a e. RR ) /\ -. 0 < a ) /\ -. a = 0 ) -> { x e. C | ( 1 / B ) < a } e. ( S |`t C ) ) |
100 |
67 99
|
pm2.61dan |
|- ( ( ( ph /\ a e. RR ) /\ -. 0 < a ) -> { x e. C | ( 1 / B ) < a } e. ( S |`t C ) ) |
101 |
55 100
|
pm2.61dan |
|- ( ( ph /\ a e. RR ) -> { x e. C | ( 1 / B ) < a } e. ( S |`t C ) ) |
102 |
1 7 2 16 26 101
|
issmfdmpt |
|- ( ph -> ( x e. C |-> ( 1 / B ) ) e. ( SMblFn ` S ) ) |