| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfrec.x |
|- F/ x ph |
| 2 |
|
smfrec.s |
|- ( ph -> S e. SAlg ) |
| 3 |
|
smfrec.a |
|- ( ph -> A e. V ) |
| 4 |
|
smfrec.b |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
| 5 |
|
smfrec.m |
|- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) |
| 6 |
|
smfrec.e |
|- C = { x e. A | B =/= 0 } |
| 7 |
|
nfv |
|- F/ a ph |
| 8 |
|
ssrab2 |
|- { x e. A | B =/= 0 } C_ A |
| 9 |
6 8
|
eqsstri |
|- C C_ A |
| 10 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
| 11 |
1 10 4
|
dmmptdf |
|- ( ph -> dom ( x e. A |-> B ) = A ) |
| 12 |
11
|
eqcomd |
|- ( ph -> A = dom ( x e. A |-> B ) ) |
| 13 |
|
eqid |
|- dom ( x e. A |-> B ) = dom ( x e. A |-> B ) |
| 14 |
2 5 13
|
smfdmss |
|- ( ph -> dom ( x e. A |-> B ) C_ U. S ) |
| 15 |
12 14
|
eqsstrd |
|- ( ph -> A C_ U. S ) |
| 16 |
9 15
|
sstrid |
|- ( ph -> C C_ U. S ) |
| 17 |
|
1red |
|- ( ( ph /\ x e. C ) -> 1 e. RR ) |
| 18 |
9
|
sseli |
|- ( x e. C -> x e. A ) |
| 19 |
18
|
adantl |
|- ( ( ph /\ x e. C ) -> x e. A ) |
| 20 |
19 4
|
syldan |
|- ( ( ph /\ x e. C ) -> B e. RR ) |
| 21 |
6
|
eleq2i |
|- ( x e. C <-> x e. { x e. A | B =/= 0 } ) |
| 22 |
21
|
biimpi |
|- ( x e. C -> x e. { x e. A | B =/= 0 } ) |
| 23 |
|
rabidim2 |
|- ( x e. { x e. A | B =/= 0 } -> B =/= 0 ) |
| 24 |
22 23
|
syl |
|- ( x e. C -> B =/= 0 ) |
| 25 |
24
|
adantl |
|- ( ( ph /\ x e. C ) -> B =/= 0 ) |
| 26 |
17 20 25
|
redivcld |
|- ( ( ph /\ x e. C ) -> ( 1 / B ) e. RR ) |
| 27 |
|
nfv |
|- F/ x a e. RR |
| 28 |
1 27
|
nfan |
|- F/ x ( ph /\ a e. RR ) |
| 29 |
|
nfv |
|- F/ x 0 < a |
| 30 |
28 29
|
nfan |
|- F/ x ( ( ph /\ a e. RR ) /\ 0 < a ) |
| 31 |
20
|
ad4ant14 |
|- ( ( ( ( ph /\ a e. RR ) /\ 0 < a ) /\ x e. C ) -> B e. RR ) |
| 32 |
24
|
adantl |
|- ( ( ( ( ph /\ a e. RR ) /\ 0 < a ) /\ x e. C ) -> B =/= 0 ) |
| 33 |
|
simpl |
|- ( ( a e. RR /\ 0 < a ) -> a e. RR ) |
| 34 |
|
simpr |
|- ( ( a e. RR /\ 0 < a ) -> 0 < a ) |
| 35 |
33 34
|
elrpd |
|- ( ( a e. RR /\ 0 < a ) -> a e. RR+ ) |
| 36 |
35
|
adantll |
|- ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> a e. RR+ ) |
| 37 |
30 31 32 36
|
pimrecltpos |
|- ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> { x e. C | ( 1 / B ) < a } = ( { x e. C | ( 1 / a ) < B } u. { x e. C | B < 0 } ) ) |
| 38 |
6 3
|
rabexd |
|- ( ph -> C e. _V ) |
| 39 |
|
eqid |
|- ( S |`t C ) = ( S |`t C ) |
| 40 |
2 38 39
|
subsalsal |
|- ( ph -> ( S |`t C ) e. SAlg ) |
| 41 |
40
|
ad2antrr |
|- ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> ( S |`t C ) e. SAlg ) |
| 42 |
2
|
adantr |
|- ( ( ph /\ a e. RR ) -> S e. SAlg ) |
| 43 |
42
|
adantr |
|- ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> S e. SAlg ) |
| 44 |
9
|
a1i |
|- ( ph -> C C_ A ) |
| 45 |
2 5 44
|
sssmfmpt |
|- ( ph -> ( x e. C |-> B ) e. ( SMblFn ` S ) ) |
| 46 |
45
|
adantr |
|- ( ( ph /\ a e. RR ) -> ( x e. C |-> B ) e. ( SMblFn ` S ) ) |
| 47 |
46
|
adantr |
|- ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> ( x e. C |-> B ) e. ( SMblFn ` S ) ) |
| 48 |
35
|
rprecred |
|- ( ( a e. RR /\ 0 < a ) -> ( 1 / a ) e. RR ) |
| 49 |
48
|
adantll |
|- ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> ( 1 / a ) e. RR ) |
| 50 |
30 43 31 47 49
|
smfpimgtmpt |
|- ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> { x e. C | ( 1 / a ) < B } e. ( S |`t C ) ) |
| 51 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 52 |
1 2 20 45 51
|
smfpimltmpt |
|- ( ph -> { x e. C | B < 0 } e. ( S |`t C ) ) |
| 53 |
52
|
ad2antrr |
|- ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> { x e. C | B < 0 } e. ( S |`t C ) ) |
| 54 |
41 50 53
|
saluncld |
|- ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> ( { x e. C | ( 1 / a ) < B } u. { x e. C | B < 0 } ) e. ( S |`t C ) ) |
| 55 |
37 54
|
eqeltrd |
|- ( ( ( ph /\ a e. RR ) /\ 0 < a ) -> { x e. C | ( 1 / B ) < a } e. ( S |`t C ) ) |
| 56 |
|
nfv |
|- F/ x a = 0 |
| 57 |
1 56
|
nfan |
|- F/ x ( ph /\ a = 0 ) |
| 58 |
|
breq2 |
|- ( a = 0 -> ( ( 1 / B ) < a <-> ( 1 / B ) < 0 ) ) |
| 59 |
58
|
ad2antlr |
|- ( ( ( ph /\ a = 0 ) /\ x e. C ) -> ( ( 1 / B ) < a <-> ( 1 / B ) < 0 ) ) |
| 60 |
20 25
|
reclt0 |
|- ( ( ph /\ x e. C ) -> ( B < 0 <-> ( 1 / B ) < 0 ) ) |
| 61 |
60
|
bicomd |
|- ( ( ph /\ x e. C ) -> ( ( 1 / B ) < 0 <-> B < 0 ) ) |
| 62 |
61
|
adantlr |
|- ( ( ( ph /\ a = 0 ) /\ x e. C ) -> ( ( 1 / B ) < 0 <-> B < 0 ) ) |
| 63 |
59 62
|
bitrd |
|- ( ( ( ph /\ a = 0 ) /\ x e. C ) -> ( ( 1 / B ) < a <-> B < 0 ) ) |
| 64 |
57 63
|
rabbida |
|- ( ( ph /\ a = 0 ) -> { x e. C | ( 1 / B ) < a } = { x e. C | B < 0 } ) |
| 65 |
52
|
adantr |
|- ( ( ph /\ a = 0 ) -> { x e. C | B < 0 } e. ( S |`t C ) ) |
| 66 |
64 65
|
eqeltrd |
|- ( ( ph /\ a = 0 ) -> { x e. C | ( 1 / B ) < a } e. ( S |`t C ) ) |
| 67 |
66
|
ad4ant14 |
|- ( ( ( ( ph /\ a e. RR ) /\ -. 0 < a ) /\ a = 0 ) -> { x e. C | ( 1 / B ) < a } e. ( S |`t C ) ) |
| 68 |
|
simpll |
|- ( ( ( ( ph /\ a e. RR ) /\ -. 0 < a ) /\ -. a = 0 ) -> ( ph /\ a e. RR ) ) |
| 69 |
|
simpll |
|- ( ( ( a e. RR /\ -. 0 < a ) /\ -. a = 0 ) -> a e. RR ) |
| 70 |
|
0red |
|- ( ( ( a e. RR /\ -. 0 < a ) /\ -. a = 0 ) -> 0 e. RR ) |
| 71 |
|
neqne |
|- ( -. a = 0 -> a =/= 0 ) |
| 72 |
71
|
adantl |
|- ( ( ( a e. RR /\ -. 0 < a ) /\ -. a = 0 ) -> a =/= 0 ) |
| 73 |
|
simplr |
|- ( ( ( a e. RR /\ -. 0 < a ) /\ -. a = 0 ) -> -. 0 < a ) |
| 74 |
69 70 72 73
|
lttri5d |
|- ( ( ( a e. RR /\ -. 0 < a ) /\ -. a = 0 ) -> a < 0 ) |
| 75 |
74
|
adantlll |
|- ( ( ( ( ph /\ a e. RR ) /\ -. 0 < a ) /\ -. a = 0 ) -> a < 0 ) |
| 76 |
|
nfv |
|- F/ x a < 0 |
| 77 |
28 76
|
nfan |
|- F/ x ( ( ph /\ a e. RR ) /\ a < 0 ) |
| 78 |
4
|
adantlr |
|- ( ( ( ph /\ a e. RR ) /\ x e. A ) -> B e. RR ) |
| 79 |
18 78
|
sylan2 |
|- ( ( ( ph /\ a e. RR ) /\ x e. C ) -> B e. RR ) |
| 80 |
79
|
adantlr |
|- ( ( ( ( ph /\ a e. RR ) /\ a < 0 ) /\ x e. C ) -> B e. RR ) |
| 81 |
24
|
adantl |
|- ( ( ( ( ph /\ a e. RR ) /\ a < 0 ) /\ x e. C ) -> B =/= 0 ) |
| 82 |
|
simpr |
|- ( ( ph /\ a e. RR ) -> a e. RR ) |
| 83 |
82
|
adantr |
|- ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> a e. RR ) |
| 84 |
|
simpr |
|- ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> a < 0 ) |
| 85 |
77 80 81 83 84
|
pimrecltneg |
|- ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> { x e. C | ( 1 / B ) < a } = { x e. C | B e. ( ( 1 / a ) (,) 0 ) } ) |
| 86 |
42
|
adantr |
|- ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> S e. SAlg ) |
| 87 |
38
|
ad2antrr |
|- ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> C e. _V ) |
| 88 |
46
|
adantr |
|- ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> ( x e. C |-> B ) e. ( SMblFn ` S ) ) |
| 89 |
|
1red |
|- ( ( a e. RR /\ a < 0 ) -> 1 e. RR ) |
| 90 |
|
simpl |
|- ( ( a e. RR /\ a < 0 ) -> a e. RR ) |
| 91 |
|
lt0ne0 |
|- ( ( a e. RR /\ a < 0 ) -> a =/= 0 ) |
| 92 |
89 90 91
|
redivcld |
|- ( ( a e. RR /\ a < 0 ) -> ( 1 / a ) e. RR ) |
| 93 |
92
|
adantll |
|- ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> ( 1 / a ) e. RR ) |
| 94 |
93
|
rexrd |
|- ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> ( 1 / a ) e. RR* ) |
| 95 |
51
|
ad2antrr |
|- ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> 0 e. RR ) |
| 96 |
95
|
rexrd |
|- ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> 0 e. RR* ) |
| 97 |
77 86 87 80 88 94 96
|
smfpimioompt |
|- ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> { x e. C | B e. ( ( 1 / a ) (,) 0 ) } e. ( S |`t C ) ) |
| 98 |
85 97
|
eqeltrd |
|- ( ( ( ph /\ a e. RR ) /\ a < 0 ) -> { x e. C | ( 1 / B ) < a } e. ( S |`t C ) ) |
| 99 |
68 75 98
|
syl2anc |
|- ( ( ( ( ph /\ a e. RR ) /\ -. 0 < a ) /\ -. a = 0 ) -> { x e. C | ( 1 / B ) < a } e. ( S |`t C ) ) |
| 100 |
67 99
|
pm2.61dan |
|- ( ( ( ph /\ a e. RR ) /\ -. 0 < a ) -> { x e. C | ( 1 / B ) < a } e. ( S |`t C ) ) |
| 101 |
55 100
|
pm2.61dan |
|- ( ( ph /\ a e. RR ) -> { x e. C | ( 1 / B ) < a } e. ( S |`t C ) ) |
| 102 |
1 7 2 16 26 101
|
issmfdmpt |
|- ( ph -> ( x e. C |-> ( 1 / B ) ) e. ( SMblFn ` S ) ) |