Step |
Hyp |
Ref |
Expression |
1 |
|
smfrec.x |
|
2 |
|
smfrec.s |
|
3 |
|
smfrec.a |
|
4 |
|
smfrec.b |
|
5 |
|
smfrec.m |
|
6 |
|
smfrec.e |
|
7 |
|
nfv |
|
8 |
|
ssrab2 |
|
9 |
6 8
|
eqsstri |
|
10 |
|
eqid |
|
11 |
1 10 4
|
dmmptdf |
|
12 |
11
|
eqcomd |
|
13 |
|
eqid |
|
14 |
2 5 13
|
smfdmss |
|
15 |
12 14
|
eqsstrd |
|
16 |
9 15
|
sstrid |
|
17 |
|
1red |
|
18 |
9
|
sseli |
|
19 |
18
|
adantl |
|
20 |
19 4
|
syldan |
|
21 |
6
|
eleq2i |
|
22 |
21
|
biimpi |
|
23 |
|
rabidim2 |
|
24 |
22 23
|
syl |
|
25 |
24
|
adantl |
|
26 |
17 20 25
|
redivcld |
|
27 |
|
nfv |
|
28 |
1 27
|
nfan |
|
29 |
|
nfv |
|
30 |
28 29
|
nfan |
|
31 |
20
|
ad4ant14 |
|
32 |
24
|
adantl |
|
33 |
|
simpl |
|
34 |
|
simpr |
|
35 |
33 34
|
elrpd |
|
36 |
35
|
adantll |
|
37 |
30 31 32 36
|
pimrecltpos |
|
38 |
6 3
|
rabexd |
|
39 |
|
eqid |
|
40 |
2 38 39
|
subsalsal |
|
41 |
40
|
ad2antrr |
|
42 |
2
|
adantr |
|
43 |
42
|
adantr |
|
44 |
9
|
a1i |
|
45 |
2 5 44
|
sssmfmpt |
|
46 |
45
|
adantr |
|
47 |
46
|
adantr |
|
48 |
35
|
rprecred |
|
49 |
48
|
adantll |
|
50 |
30 43 31 47 49
|
smfpimgtmpt |
|
51 |
|
0red |
|
52 |
1 2 20 45 51
|
smfpimltmpt |
|
53 |
52
|
ad2antrr |
|
54 |
41 50 53
|
saluncld |
|
55 |
37 54
|
eqeltrd |
|
56 |
|
nfv |
|
57 |
1 56
|
nfan |
|
58 |
|
breq2 |
|
59 |
58
|
ad2antlr |
|
60 |
20 25
|
reclt0 |
|
61 |
60
|
bicomd |
|
62 |
61
|
adantlr |
|
63 |
59 62
|
bitrd |
|
64 |
57 63
|
rabbida |
|
65 |
52
|
adantr |
|
66 |
64 65
|
eqeltrd |
|
67 |
66
|
ad4ant14 |
|
68 |
|
simpll |
|
69 |
|
simpll |
|
70 |
|
0red |
|
71 |
|
neqne |
|
72 |
71
|
adantl |
|
73 |
|
simplr |
|
74 |
69 70 72 73
|
lttri5d |
|
75 |
74
|
adantlll |
|
76 |
|
nfv |
|
77 |
28 76
|
nfan |
|
78 |
4
|
adantlr |
|
79 |
18 78
|
sylan2 |
|
80 |
79
|
adantlr |
|
81 |
24
|
adantl |
|
82 |
|
simpr |
|
83 |
82
|
adantr |
|
84 |
|
simpr |
|
85 |
77 80 81 83 84
|
pimrecltneg |
|
86 |
42
|
adantr |
|
87 |
38
|
ad2antrr |
|
88 |
46
|
adantr |
|
89 |
|
1red |
|
90 |
|
simpl |
|
91 |
|
lt0ne0 |
|
92 |
89 90 91
|
redivcld |
|
93 |
92
|
adantll |
|
94 |
93
|
rexrd |
|
95 |
51
|
ad2antrr |
|
96 |
95
|
rexrd |
|
97 |
77 86 87 80 88 94 96
|
smfpimioompt |
|
98 |
85 97
|
eqeltrd |
|
99 |
68 75 98
|
syl2anc |
|
100 |
67 99
|
pm2.61dan |
|
101 |
55 100
|
pm2.61dan |
|
102 |
1 7 2 16 26 101
|
issmfdmpt |
|