| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfrec.x | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | smfrec.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 3 |  | smfrec.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 4 |  | smfrec.b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 5 |  | smfrec.m | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 6 |  | smfrec.e | ⊢ 𝐶  =  { 𝑥  ∈  𝐴  ∣  𝐵  ≠  0 } | 
						
							| 7 |  | nfv | ⊢ Ⅎ 𝑎 𝜑 | 
						
							| 8 |  | ssrab2 | ⊢ { 𝑥  ∈  𝐴  ∣  𝐵  ≠  0 }  ⊆  𝐴 | 
						
							| 9 | 6 8 | eqsstri | ⊢ 𝐶  ⊆  𝐴 | 
						
							| 10 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 11 | 1 10 4 | dmmptdf | ⊢ ( 𝜑  →  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  𝐴 ) | 
						
							| 12 | 11 | eqcomd | ⊢ ( 𝜑  →  𝐴  =  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 13 |  | eqid | ⊢ dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 14 | 2 5 13 | smfdmss | ⊢ ( 𝜑  →  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ⊆  ∪  𝑆 ) | 
						
							| 15 | 12 14 | eqsstrd | ⊢ ( 𝜑  →  𝐴  ⊆  ∪  𝑆 ) | 
						
							| 16 | 9 15 | sstrid | ⊢ ( 𝜑  →  𝐶  ⊆  ∪  𝑆 ) | 
						
							| 17 |  | 1red | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  1  ∈  ℝ ) | 
						
							| 18 | 9 | sseli | ⊢ ( 𝑥  ∈  𝐶  →  𝑥  ∈  𝐴 ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  𝑥  ∈  𝐴 ) | 
						
							| 20 | 19 4 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  𝐵  ∈  ℝ ) | 
						
							| 21 | 6 | eleq2i | ⊢ ( 𝑥  ∈  𝐶  ↔  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  ≠  0 } ) | 
						
							| 22 | 21 | biimpi | ⊢ ( 𝑥  ∈  𝐶  →  𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  ≠  0 } ) | 
						
							| 23 |  | rabidim2 | ⊢ ( 𝑥  ∈  { 𝑥  ∈  𝐴  ∣  𝐵  ≠  0 }  →  𝐵  ≠  0 ) | 
						
							| 24 | 22 23 | syl | ⊢ ( 𝑥  ∈  𝐶  →  𝐵  ≠  0 ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  𝐵  ≠  0 ) | 
						
							| 26 | 17 20 25 | redivcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  ( 1  /  𝐵 )  ∈  ℝ ) | 
						
							| 27 |  | nfv | ⊢ Ⅎ 𝑥 𝑎  ∈  ℝ | 
						
							| 28 | 1 27 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑎  ∈  ℝ ) | 
						
							| 29 |  | nfv | ⊢ Ⅎ 𝑥 0  <  𝑎 | 
						
							| 30 | 28 29 | nfan | ⊢ Ⅎ 𝑥 ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  0  <  𝑎 ) | 
						
							| 31 | 20 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  0  <  𝑎 )  ∧  𝑥  ∈  𝐶 )  →  𝐵  ∈  ℝ ) | 
						
							| 32 | 24 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  0  <  𝑎 )  ∧  𝑥  ∈  𝐶 )  →  𝐵  ≠  0 ) | 
						
							| 33 |  | simpl | ⊢ ( ( 𝑎  ∈  ℝ  ∧  0  <  𝑎 )  →  𝑎  ∈  ℝ ) | 
						
							| 34 |  | simpr | ⊢ ( ( 𝑎  ∈  ℝ  ∧  0  <  𝑎 )  →  0  <  𝑎 ) | 
						
							| 35 | 33 34 | elrpd | ⊢ ( ( 𝑎  ∈  ℝ  ∧  0  <  𝑎 )  →  𝑎  ∈  ℝ+ ) | 
						
							| 36 | 35 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  0  <  𝑎 )  →  𝑎  ∈  ℝ+ ) | 
						
							| 37 | 30 31 32 36 | pimrecltpos | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  0  <  𝑎 )  →  { 𝑥  ∈  𝐶  ∣  ( 1  /  𝐵 )  <  𝑎 }  =  ( { 𝑥  ∈  𝐶  ∣  ( 1  /  𝑎 )  <  𝐵 }  ∪  { 𝑥  ∈  𝐶  ∣  𝐵  <  0 } ) ) | 
						
							| 38 | 6 3 | rabexd | ⊢ ( 𝜑  →  𝐶  ∈  V ) | 
						
							| 39 |  | eqid | ⊢ ( 𝑆  ↾t  𝐶 )  =  ( 𝑆  ↾t  𝐶 ) | 
						
							| 40 | 2 38 39 | subsalsal | ⊢ ( 𝜑  →  ( 𝑆  ↾t  𝐶 )  ∈  SAlg ) | 
						
							| 41 | 40 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  0  <  𝑎 )  →  ( 𝑆  ↾t  𝐶 )  ∈  SAlg ) | 
						
							| 42 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝑆  ∈  SAlg ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  0  <  𝑎 )  →  𝑆  ∈  SAlg ) | 
						
							| 44 | 9 | a1i | ⊢ ( 𝜑  →  𝐶  ⊆  𝐴 ) | 
						
							| 45 | 2 5 44 | sssmfmpt | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐶  ↦  𝐵 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( 𝑥  ∈  𝐶  ↦  𝐵 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  0  <  𝑎 )  →  ( 𝑥  ∈  𝐶  ↦  𝐵 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 48 | 35 | rprecred | ⊢ ( ( 𝑎  ∈  ℝ  ∧  0  <  𝑎 )  →  ( 1  /  𝑎 )  ∈  ℝ ) | 
						
							| 49 | 48 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  0  <  𝑎 )  →  ( 1  /  𝑎 )  ∈  ℝ ) | 
						
							| 50 | 30 43 31 47 49 | smfpimgtmpt | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  0  <  𝑎 )  →  { 𝑥  ∈  𝐶  ∣  ( 1  /  𝑎 )  <  𝐵 }  ∈  ( 𝑆  ↾t  𝐶 ) ) | 
						
							| 51 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 52 | 1 2 20 45 51 | smfpimltmpt | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐶  ∣  𝐵  <  0 }  ∈  ( 𝑆  ↾t  𝐶 ) ) | 
						
							| 53 | 52 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  0  <  𝑎 )  →  { 𝑥  ∈  𝐶  ∣  𝐵  <  0 }  ∈  ( 𝑆  ↾t  𝐶 ) ) | 
						
							| 54 | 41 50 53 | saluncld | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  0  <  𝑎 )  →  ( { 𝑥  ∈  𝐶  ∣  ( 1  /  𝑎 )  <  𝐵 }  ∪  { 𝑥  ∈  𝐶  ∣  𝐵  <  0 } )  ∈  ( 𝑆  ↾t  𝐶 ) ) | 
						
							| 55 | 37 54 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  0  <  𝑎 )  →  { 𝑥  ∈  𝐶  ∣  ( 1  /  𝐵 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐶 ) ) | 
						
							| 56 |  | nfv | ⊢ Ⅎ 𝑥 𝑎  =  0 | 
						
							| 57 | 1 56 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑎  =  0 ) | 
						
							| 58 |  | breq2 | ⊢ ( 𝑎  =  0  →  ( ( 1  /  𝐵 )  <  𝑎  ↔  ( 1  /  𝐵 )  <  0 ) ) | 
						
							| 59 | 58 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑎  =  0 )  ∧  𝑥  ∈  𝐶 )  →  ( ( 1  /  𝐵 )  <  𝑎  ↔  ( 1  /  𝐵 )  <  0 ) ) | 
						
							| 60 | 20 25 | reclt0 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  ( 𝐵  <  0  ↔  ( 1  /  𝐵 )  <  0 ) ) | 
						
							| 61 | 60 | bicomd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐶 )  →  ( ( 1  /  𝐵 )  <  0  ↔  𝐵  <  0 ) ) | 
						
							| 62 | 61 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑎  =  0 )  ∧  𝑥  ∈  𝐶 )  →  ( ( 1  /  𝐵 )  <  0  ↔  𝐵  <  0 ) ) | 
						
							| 63 | 59 62 | bitrd | ⊢ ( ( ( 𝜑  ∧  𝑎  =  0 )  ∧  𝑥  ∈  𝐶 )  →  ( ( 1  /  𝐵 )  <  𝑎  ↔  𝐵  <  0 ) ) | 
						
							| 64 | 57 63 | rabbida | ⊢ ( ( 𝜑  ∧  𝑎  =  0 )  →  { 𝑥  ∈  𝐶  ∣  ( 1  /  𝐵 )  <  𝑎 }  =  { 𝑥  ∈  𝐶  ∣  𝐵  <  0 } ) | 
						
							| 65 | 52 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  =  0 )  →  { 𝑥  ∈  𝐶  ∣  𝐵  <  0 }  ∈  ( 𝑆  ↾t  𝐶 ) ) | 
						
							| 66 | 64 65 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑎  =  0 )  →  { 𝑥  ∈  𝐶  ∣  ( 1  /  𝐵 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐶 ) ) | 
						
							| 67 | 66 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ¬  0  <  𝑎 )  ∧  𝑎  =  0 )  →  { 𝑥  ∈  𝐶  ∣  ( 1  /  𝐵 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐶 ) ) | 
						
							| 68 |  | simpll | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ¬  0  <  𝑎 )  ∧  ¬  𝑎  =  0 )  →  ( 𝜑  ∧  𝑎  ∈  ℝ ) ) | 
						
							| 69 |  | simpll | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  ¬  0  <  𝑎 )  ∧  ¬  𝑎  =  0 )  →  𝑎  ∈  ℝ ) | 
						
							| 70 |  | 0red | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  ¬  0  <  𝑎 )  ∧  ¬  𝑎  =  0 )  →  0  ∈  ℝ ) | 
						
							| 71 |  | neqne | ⊢ ( ¬  𝑎  =  0  →  𝑎  ≠  0 ) | 
						
							| 72 | 71 | adantl | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  ¬  0  <  𝑎 )  ∧  ¬  𝑎  =  0 )  →  𝑎  ≠  0 ) | 
						
							| 73 |  | simplr | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  ¬  0  <  𝑎 )  ∧  ¬  𝑎  =  0 )  →  ¬  0  <  𝑎 ) | 
						
							| 74 | 69 70 72 73 | lttri5d | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  ¬  0  <  𝑎 )  ∧  ¬  𝑎  =  0 )  →  𝑎  <  0 ) | 
						
							| 75 | 74 | adantlll | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ¬  0  <  𝑎 )  ∧  ¬  𝑎  =  0 )  →  𝑎  <  0 ) | 
						
							| 76 |  | nfv | ⊢ Ⅎ 𝑥 𝑎  <  0 | 
						
							| 77 | 28 76 | nfan | ⊢ Ⅎ 𝑥 ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑎  <  0 ) | 
						
							| 78 | 4 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 79 | 18 78 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑥  ∈  𝐶 )  →  𝐵  ∈  ℝ ) | 
						
							| 80 | 79 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑎  <  0 )  ∧  𝑥  ∈  𝐶 )  →  𝐵  ∈  ℝ ) | 
						
							| 81 | 24 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑎  <  0 )  ∧  𝑥  ∈  𝐶 )  →  𝐵  ≠  0 ) | 
						
							| 82 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝑎  ∈  ℝ ) | 
						
							| 83 | 82 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑎  <  0 )  →  𝑎  ∈  ℝ ) | 
						
							| 84 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑎  <  0 )  →  𝑎  <  0 ) | 
						
							| 85 | 77 80 81 83 84 | pimrecltneg | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑎  <  0 )  →  { 𝑥  ∈  𝐶  ∣  ( 1  /  𝐵 )  <  𝑎 }  =  { 𝑥  ∈  𝐶  ∣  𝐵  ∈  ( ( 1  /  𝑎 ) (,) 0 ) } ) | 
						
							| 86 | 42 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑎  <  0 )  →  𝑆  ∈  SAlg ) | 
						
							| 87 | 38 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑎  <  0 )  →  𝐶  ∈  V ) | 
						
							| 88 | 46 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑎  <  0 )  →  ( 𝑥  ∈  𝐶  ↦  𝐵 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 89 |  | 1red | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑎  <  0 )  →  1  ∈  ℝ ) | 
						
							| 90 |  | simpl | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑎  <  0 )  →  𝑎  ∈  ℝ ) | 
						
							| 91 |  | lt0ne0 | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑎  <  0 )  →  𝑎  ≠  0 ) | 
						
							| 92 | 89 90 91 | redivcld | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑎  <  0 )  →  ( 1  /  𝑎 )  ∈  ℝ ) | 
						
							| 93 | 92 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑎  <  0 )  →  ( 1  /  𝑎 )  ∈  ℝ ) | 
						
							| 94 | 93 | rexrd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑎  <  0 )  →  ( 1  /  𝑎 )  ∈  ℝ* ) | 
						
							| 95 | 51 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑎  <  0 )  →  0  ∈  ℝ ) | 
						
							| 96 | 95 | rexrd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑎  <  0 )  →  0  ∈  ℝ* ) | 
						
							| 97 | 77 86 87 80 88 94 96 | smfpimioompt | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑎  <  0 )  →  { 𝑥  ∈  𝐶  ∣  𝐵  ∈  ( ( 1  /  𝑎 ) (,) 0 ) }  ∈  ( 𝑆  ↾t  𝐶 ) ) | 
						
							| 98 | 85 97 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑎  <  0 )  →  { 𝑥  ∈  𝐶  ∣  ( 1  /  𝐵 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐶 ) ) | 
						
							| 99 | 68 75 98 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ¬  0  <  𝑎 )  ∧  ¬  𝑎  =  0 )  →  { 𝑥  ∈  𝐶  ∣  ( 1  /  𝐵 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐶 ) ) | 
						
							| 100 | 67 99 | pm2.61dan | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ¬  0  <  𝑎 )  →  { 𝑥  ∈  𝐶  ∣  ( 1  /  𝐵 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐶 ) ) | 
						
							| 101 | 55 100 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  𝐶  ∣  ( 1  /  𝐵 )  <  𝑎 }  ∈  ( 𝑆  ↾t  𝐶 ) ) | 
						
							| 102 | 1 7 2 16 26 101 | issmfdmpt | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐶  ↦  ( 1  /  𝐵 ) )  ∈  ( SMblFn ‘ 𝑆 ) ) |