Step |
Hyp |
Ref |
Expression |
1 |
|
smfrec.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
smfrec.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
3 |
|
smfrec.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
4 |
|
smfrec.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
5 |
|
smfrec.m |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
6 |
|
smfrec.e |
⊢ 𝐶 = { 𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 0 } |
7 |
|
nfv |
⊢ Ⅎ 𝑎 𝜑 |
8 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 0 } ⊆ 𝐴 |
9 |
6 8
|
eqsstri |
⊢ 𝐶 ⊆ 𝐴 |
10 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
11 |
1 10 4
|
dmmptdf |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
12 |
11
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
13 |
|
eqid |
⊢ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
14 |
2 5 13
|
smfdmss |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ∪ 𝑆 ) |
15 |
12 14
|
eqsstrd |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝑆 ) |
16 |
9 15
|
sstrid |
⊢ ( 𝜑 → 𝐶 ⊆ ∪ 𝑆 ) |
17 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 1 ∈ ℝ ) |
18 |
9
|
sseli |
⊢ ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴 ) |
19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ 𝐴 ) |
20 |
19 4
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐵 ∈ ℝ ) |
21 |
6
|
eleq2i |
⊢ ( 𝑥 ∈ 𝐶 ↔ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 0 } ) |
22 |
21
|
biimpi |
⊢ ( 𝑥 ∈ 𝐶 → 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 0 } ) |
23 |
|
rabidim2 |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 0 } → 𝐵 ≠ 0 ) |
24 |
22 23
|
syl |
⊢ ( 𝑥 ∈ 𝐶 → 𝐵 ≠ 0 ) |
25 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐵 ≠ 0 ) |
26 |
17 20 25
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 1 / 𝐵 ) ∈ ℝ ) |
27 |
|
nfv |
⊢ Ⅎ 𝑥 𝑎 ∈ ℝ |
28 |
1 27
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑎 ∈ ℝ ) |
29 |
|
nfv |
⊢ Ⅎ 𝑥 0 < 𝑎 |
30 |
28 29
|
nfan |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 0 < 𝑎 ) |
31 |
20
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 0 < 𝑎 ) ∧ 𝑥 ∈ 𝐶 ) → 𝐵 ∈ ℝ ) |
32 |
24
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 0 < 𝑎 ) ∧ 𝑥 ∈ 𝐶 ) → 𝐵 ≠ 0 ) |
33 |
|
simpl |
⊢ ( ( 𝑎 ∈ ℝ ∧ 0 < 𝑎 ) → 𝑎 ∈ ℝ ) |
34 |
|
simpr |
⊢ ( ( 𝑎 ∈ ℝ ∧ 0 < 𝑎 ) → 0 < 𝑎 ) |
35 |
33 34
|
elrpd |
⊢ ( ( 𝑎 ∈ ℝ ∧ 0 < 𝑎 ) → 𝑎 ∈ ℝ+ ) |
36 |
35
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 0 < 𝑎 ) → 𝑎 ∈ ℝ+ ) |
37 |
30 31 32 36
|
pimrecltpos |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 0 < 𝑎 ) → { 𝑥 ∈ 𝐶 ∣ ( 1 / 𝐵 ) < 𝑎 } = ( { 𝑥 ∈ 𝐶 ∣ ( 1 / 𝑎 ) < 𝐵 } ∪ { 𝑥 ∈ 𝐶 ∣ 𝐵 < 0 } ) ) |
38 |
6 3
|
rabexd |
⊢ ( 𝜑 → 𝐶 ∈ V ) |
39 |
|
eqid |
⊢ ( 𝑆 ↾t 𝐶 ) = ( 𝑆 ↾t 𝐶 ) |
40 |
2 38 39
|
subsalsal |
⊢ ( 𝜑 → ( 𝑆 ↾t 𝐶 ) ∈ SAlg ) |
41 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 0 < 𝑎 ) → ( 𝑆 ↾t 𝐶 ) ∈ SAlg ) |
42 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝑆 ∈ SAlg ) |
43 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 0 < 𝑎 ) → 𝑆 ∈ SAlg ) |
44 |
9
|
a1i |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
45 |
2 5 44
|
sssmfmpt |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
47 |
46
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 0 < 𝑎 ) → ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
48 |
35
|
rprecred |
⊢ ( ( 𝑎 ∈ ℝ ∧ 0 < 𝑎 ) → ( 1 / 𝑎 ) ∈ ℝ ) |
49 |
48
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 0 < 𝑎 ) → ( 1 / 𝑎 ) ∈ ℝ ) |
50 |
30 43 31 47 49
|
smfpimgtmpt |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 0 < 𝑎 ) → { 𝑥 ∈ 𝐶 ∣ ( 1 / 𝑎 ) < 𝐵 } ∈ ( 𝑆 ↾t 𝐶 ) ) |
51 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
52 |
1 2 20 45 51
|
smfpimltmpt |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐶 ∣ 𝐵 < 0 } ∈ ( 𝑆 ↾t 𝐶 ) ) |
53 |
52
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 0 < 𝑎 ) → { 𝑥 ∈ 𝐶 ∣ 𝐵 < 0 } ∈ ( 𝑆 ↾t 𝐶 ) ) |
54 |
41 50 53
|
saluncld |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 0 < 𝑎 ) → ( { 𝑥 ∈ 𝐶 ∣ ( 1 / 𝑎 ) < 𝐵 } ∪ { 𝑥 ∈ 𝐶 ∣ 𝐵 < 0 } ) ∈ ( 𝑆 ↾t 𝐶 ) ) |
55 |
37 54
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 0 < 𝑎 ) → { 𝑥 ∈ 𝐶 ∣ ( 1 / 𝐵 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐶 ) ) |
56 |
|
nfv |
⊢ Ⅎ 𝑥 𝑎 = 0 |
57 |
1 56
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑎 = 0 ) |
58 |
|
breq2 |
⊢ ( 𝑎 = 0 → ( ( 1 / 𝐵 ) < 𝑎 ↔ ( 1 / 𝐵 ) < 0 ) ) |
59 |
58
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑎 = 0 ) ∧ 𝑥 ∈ 𝐶 ) → ( ( 1 / 𝐵 ) < 𝑎 ↔ ( 1 / 𝐵 ) < 0 ) ) |
60 |
20 25
|
reclt0 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝐵 < 0 ↔ ( 1 / 𝐵 ) < 0 ) ) |
61 |
60
|
bicomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 1 / 𝐵 ) < 0 ↔ 𝐵 < 0 ) ) |
62 |
61
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑎 = 0 ) ∧ 𝑥 ∈ 𝐶 ) → ( ( 1 / 𝐵 ) < 0 ↔ 𝐵 < 0 ) ) |
63 |
59 62
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 = 0 ) ∧ 𝑥 ∈ 𝐶 ) → ( ( 1 / 𝐵 ) < 𝑎 ↔ 𝐵 < 0 ) ) |
64 |
57 63
|
rabbida |
⊢ ( ( 𝜑 ∧ 𝑎 = 0 ) → { 𝑥 ∈ 𝐶 ∣ ( 1 / 𝐵 ) < 𝑎 } = { 𝑥 ∈ 𝐶 ∣ 𝐵 < 0 } ) |
65 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 = 0 ) → { 𝑥 ∈ 𝐶 ∣ 𝐵 < 0 } ∈ ( 𝑆 ↾t 𝐶 ) ) |
66 |
64 65
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑎 = 0 ) → { 𝑥 ∈ 𝐶 ∣ ( 1 / 𝐵 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐶 ) ) |
67 |
66
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ¬ 0 < 𝑎 ) ∧ 𝑎 = 0 ) → { 𝑥 ∈ 𝐶 ∣ ( 1 / 𝐵 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐶 ) ) |
68 |
|
simpll |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 𝑎 = 0 ) → ( 𝜑 ∧ 𝑎 ∈ ℝ ) ) |
69 |
|
simpll |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎 ) ∧ ¬ 𝑎 = 0 ) → 𝑎 ∈ ℝ ) |
70 |
|
0red |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎 ) ∧ ¬ 𝑎 = 0 ) → 0 ∈ ℝ ) |
71 |
|
neqne |
⊢ ( ¬ 𝑎 = 0 → 𝑎 ≠ 0 ) |
72 |
71
|
adantl |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎 ) ∧ ¬ 𝑎 = 0 ) → 𝑎 ≠ 0 ) |
73 |
|
simplr |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎 ) ∧ ¬ 𝑎 = 0 ) → ¬ 0 < 𝑎 ) |
74 |
69 70 72 73
|
lttri5d |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎 ) ∧ ¬ 𝑎 = 0 ) → 𝑎 < 0 ) |
75 |
74
|
adantlll |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 𝑎 = 0 ) → 𝑎 < 0 ) |
76 |
|
nfv |
⊢ Ⅎ 𝑥 𝑎 < 0 |
77 |
28 76
|
nfan |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) |
78 |
4
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
79 |
18 78
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑥 ∈ 𝐶 ) → 𝐵 ∈ ℝ ) |
80 |
79
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) ∧ 𝑥 ∈ 𝐶 ) → 𝐵 ∈ ℝ ) |
81 |
24
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) ∧ 𝑥 ∈ 𝐶 ) → 𝐵 ≠ 0 ) |
82 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝑎 ∈ ℝ ) |
83 |
82
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) → 𝑎 ∈ ℝ ) |
84 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) → 𝑎 < 0 ) |
85 |
77 80 81 83 84
|
pimrecltneg |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) → { 𝑥 ∈ 𝐶 ∣ ( 1 / 𝐵 ) < 𝑎 } = { 𝑥 ∈ 𝐶 ∣ 𝐵 ∈ ( ( 1 / 𝑎 ) (,) 0 ) } ) |
86 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) → 𝑆 ∈ SAlg ) |
87 |
38
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) → 𝐶 ∈ V ) |
88 |
46
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) → ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
89 |
|
1red |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑎 < 0 ) → 1 ∈ ℝ ) |
90 |
|
simpl |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑎 < 0 ) → 𝑎 ∈ ℝ ) |
91 |
|
lt0ne0 |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑎 < 0 ) → 𝑎 ≠ 0 ) |
92 |
89 90 91
|
redivcld |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑎 < 0 ) → ( 1 / 𝑎 ) ∈ ℝ ) |
93 |
92
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) → ( 1 / 𝑎 ) ∈ ℝ ) |
94 |
93
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) → ( 1 / 𝑎 ) ∈ ℝ* ) |
95 |
51
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) → 0 ∈ ℝ ) |
96 |
95
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) → 0 ∈ ℝ* ) |
97 |
77 86 87 80 88 94 96
|
smfpimioompt |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) → { 𝑥 ∈ 𝐶 ∣ 𝐵 ∈ ( ( 1 / 𝑎 ) (,) 0 ) } ∈ ( 𝑆 ↾t 𝐶 ) ) |
98 |
85 97
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) → { 𝑥 ∈ 𝐶 ∣ ( 1 / 𝐵 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐶 ) ) |
99 |
68 75 98
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 𝑎 = 0 ) → { 𝑥 ∈ 𝐶 ∣ ( 1 / 𝐵 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐶 ) ) |
100 |
67 99
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ¬ 0 < 𝑎 ) → { 𝑥 ∈ 𝐶 ∣ ( 1 / 𝐵 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐶 ) ) |
101 |
55 100
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ 𝐶 ∣ ( 1 / 𝐵 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐶 ) ) |
102 |
1 7 2 16 26 101
|
issmfdmpt |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ ( 1 / 𝐵 ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |