| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfrec.x |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
smfrec.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 3 |
|
smfrec.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 4 |
|
smfrec.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 5 |
|
smfrec.m |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 6 |
|
smfrec.e |
⊢ 𝐶 = { 𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 0 } |
| 7 |
|
nfv |
⊢ Ⅎ 𝑎 𝜑 |
| 8 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 0 } ⊆ 𝐴 |
| 9 |
6 8
|
eqsstri |
⊢ 𝐶 ⊆ 𝐴 |
| 10 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 11 |
1 10 4
|
dmmptdf |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 12 |
11
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 13 |
|
eqid |
⊢ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 14 |
2 5 13
|
smfdmss |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ∪ 𝑆 ) |
| 15 |
12 14
|
eqsstrd |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝑆 ) |
| 16 |
9 15
|
sstrid |
⊢ ( 𝜑 → 𝐶 ⊆ ∪ 𝑆 ) |
| 17 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 1 ∈ ℝ ) |
| 18 |
9
|
sseli |
⊢ ( 𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴 ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ 𝐴 ) |
| 20 |
19 4
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐵 ∈ ℝ ) |
| 21 |
6
|
eleq2i |
⊢ ( 𝑥 ∈ 𝐶 ↔ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 0 } ) |
| 22 |
21
|
biimpi |
⊢ ( 𝑥 ∈ 𝐶 → 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 0 } ) |
| 23 |
|
rabidim2 |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 0 } → 𝐵 ≠ 0 ) |
| 24 |
22 23
|
syl |
⊢ ( 𝑥 ∈ 𝐶 → 𝐵 ≠ 0 ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐵 ≠ 0 ) |
| 26 |
17 20 25
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 1 / 𝐵 ) ∈ ℝ ) |
| 27 |
|
nfv |
⊢ Ⅎ 𝑥 𝑎 ∈ ℝ |
| 28 |
1 27
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑎 ∈ ℝ ) |
| 29 |
|
nfv |
⊢ Ⅎ 𝑥 0 < 𝑎 |
| 30 |
28 29
|
nfan |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 0 < 𝑎 ) |
| 31 |
20
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 0 < 𝑎 ) ∧ 𝑥 ∈ 𝐶 ) → 𝐵 ∈ ℝ ) |
| 32 |
24
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 0 < 𝑎 ) ∧ 𝑥 ∈ 𝐶 ) → 𝐵 ≠ 0 ) |
| 33 |
|
simpl |
⊢ ( ( 𝑎 ∈ ℝ ∧ 0 < 𝑎 ) → 𝑎 ∈ ℝ ) |
| 34 |
|
simpr |
⊢ ( ( 𝑎 ∈ ℝ ∧ 0 < 𝑎 ) → 0 < 𝑎 ) |
| 35 |
33 34
|
elrpd |
⊢ ( ( 𝑎 ∈ ℝ ∧ 0 < 𝑎 ) → 𝑎 ∈ ℝ+ ) |
| 36 |
35
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 0 < 𝑎 ) → 𝑎 ∈ ℝ+ ) |
| 37 |
30 31 32 36
|
pimrecltpos |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 0 < 𝑎 ) → { 𝑥 ∈ 𝐶 ∣ ( 1 / 𝐵 ) < 𝑎 } = ( { 𝑥 ∈ 𝐶 ∣ ( 1 / 𝑎 ) < 𝐵 } ∪ { 𝑥 ∈ 𝐶 ∣ 𝐵 < 0 } ) ) |
| 38 |
6 3
|
rabexd |
⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 39 |
|
eqid |
⊢ ( 𝑆 ↾t 𝐶 ) = ( 𝑆 ↾t 𝐶 ) |
| 40 |
2 38 39
|
subsalsal |
⊢ ( 𝜑 → ( 𝑆 ↾t 𝐶 ) ∈ SAlg ) |
| 41 |
40
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 0 < 𝑎 ) → ( 𝑆 ↾t 𝐶 ) ∈ SAlg ) |
| 42 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝑆 ∈ SAlg ) |
| 43 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 0 < 𝑎 ) → 𝑆 ∈ SAlg ) |
| 44 |
9
|
a1i |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
| 45 |
2 5 44
|
sssmfmpt |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 47 |
46
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 0 < 𝑎 ) → ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 48 |
35
|
rprecred |
⊢ ( ( 𝑎 ∈ ℝ ∧ 0 < 𝑎 ) → ( 1 / 𝑎 ) ∈ ℝ ) |
| 49 |
48
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 0 < 𝑎 ) → ( 1 / 𝑎 ) ∈ ℝ ) |
| 50 |
30 43 31 47 49
|
smfpimgtmpt |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 0 < 𝑎 ) → { 𝑥 ∈ 𝐶 ∣ ( 1 / 𝑎 ) < 𝐵 } ∈ ( 𝑆 ↾t 𝐶 ) ) |
| 51 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 52 |
1 2 20 45 51
|
smfpimltmpt |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐶 ∣ 𝐵 < 0 } ∈ ( 𝑆 ↾t 𝐶 ) ) |
| 53 |
52
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 0 < 𝑎 ) → { 𝑥 ∈ 𝐶 ∣ 𝐵 < 0 } ∈ ( 𝑆 ↾t 𝐶 ) ) |
| 54 |
41 50 53
|
saluncld |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 0 < 𝑎 ) → ( { 𝑥 ∈ 𝐶 ∣ ( 1 / 𝑎 ) < 𝐵 } ∪ { 𝑥 ∈ 𝐶 ∣ 𝐵 < 0 } ) ∈ ( 𝑆 ↾t 𝐶 ) ) |
| 55 |
37 54
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 0 < 𝑎 ) → { 𝑥 ∈ 𝐶 ∣ ( 1 / 𝐵 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐶 ) ) |
| 56 |
|
nfv |
⊢ Ⅎ 𝑥 𝑎 = 0 |
| 57 |
1 56
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑎 = 0 ) |
| 58 |
|
breq2 |
⊢ ( 𝑎 = 0 → ( ( 1 / 𝐵 ) < 𝑎 ↔ ( 1 / 𝐵 ) < 0 ) ) |
| 59 |
58
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑎 = 0 ) ∧ 𝑥 ∈ 𝐶 ) → ( ( 1 / 𝐵 ) < 𝑎 ↔ ( 1 / 𝐵 ) < 0 ) ) |
| 60 |
20 25
|
reclt0 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝐵 < 0 ↔ ( 1 / 𝐵 ) < 0 ) ) |
| 61 |
60
|
bicomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 1 / 𝐵 ) < 0 ↔ 𝐵 < 0 ) ) |
| 62 |
61
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑎 = 0 ) ∧ 𝑥 ∈ 𝐶 ) → ( ( 1 / 𝐵 ) < 0 ↔ 𝐵 < 0 ) ) |
| 63 |
59 62
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 = 0 ) ∧ 𝑥 ∈ 𝐶 ) → ( ( 1 / 𝐵 ) < 𝑎 ↔ 𝐵 < 0 ) ) |
| 64 |
57 63
|
rabbida |
⊢ ( ( 𝜑 ∧ 𝑎 = 0 ) → { 𝑥 ∈ 𝐶 ∣ ( 1 / 𝐵 ) < 𝑎 } = { 𝑥 ∈ 𝐶 ∣ 𝐵 < 0 } ) |
| 65 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 = 0 ) → { 𝑥 ∈ 𝐶 ∣ 𝐵 < 0 } ∈ ( 𝑆 ↾t 𝐶 ) ) |
| 66 |
64 65
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑎 = 0 ) → { 𝑥 ∈ 𝐶 ∣ ( 1 / 𝐵 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐶 ) ) |
| 67 |
66
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ¬ 0 < 𝑎 ) ∧ 𝑎 = 0 ) → { 𝑥 ∈ 𝐶 ∣ ( 1 / 𝐵 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐶 ) ) |
| 68 |
|
simpll |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 𝑎 = 0 ) → ( 𝜑 ∧ 𝑎 ∈ ℝ ) ) |
| 69 |
|
simpll |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎 ) ∧ ¬ 𝑎 = 0 ) → 𝑎 ∈ ℝ ) |
| 70 |
|
0red |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎 ) ∧ ¬ 𝑎 = 0 ) → 0 ∈ ℝ ) |
| 71 |
|
neqne |
⊢ ( ¬ 𝑎 = 0 → 𝑎 ≠ 0 ) |
| 72 |
71
|
adantl |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎 ) ∧ ¬ 𝑎 = 0 ) → 𝑎 ≠ 0 ) |
| 73 |
|
simplr |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎 ) ∧ ¬ 𝑎 = 0 ) → ¬ 0 < 𝑎 ) |
| 74 |
69 70 72 73
|
lttri5d |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ ¬ 0 < 𝑎 ) ∧ ¬ 𝑎 = 0 ) → 𝑎 < 0 ) |
| 75 |
74
|
adantlll |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 𝑎 = 0 ) → 𝑎 < 0 ) |
| 76 |
|
nfv |
⊢ Ⅎ 𝑥 𝑎 < 0 |
| 77 |
28 76
|
nfan |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) |
| 78 |
4
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 79 |
18 78
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑥 ∈ 𝐶 ) → 𝐵 ∈ ℝ ) |
| 80 |
79
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) ∧ 𝑥 ∈ 𝐶 ) → 𝐵 ∈ ℝ ) |
| 81 |
24
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) ∧ 𝑥 ∈ 𝐶 ) → 𝐵 ≠ 0 ) |
| 82 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝑎 ∈ ℝ ) |
| 83 |
82
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) → 𝑎 ∈ ℝ ) |
| 84 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) → 𝑎 < 0 ) |
| 85 |
77 80 81 83 84
|
pimrecltneg |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) → { 𝑥 ∈ 𝐶 ∣ ( 1 / 𝐵 ) < 𝑎 } = { 𝑥 ∈ 𝐶 ∣ 𝐵 ∈ ( ( 1 / 𝑎 ) (,) 0 ) } ) |
| 86 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) → 𝑆 ∈ SAlg ) |
| 87 |
38
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) → 𝐶 ∈ V ) |
| 88 |
46
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) → ( 𝑥 ∈ 𝐶 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 89 |
|
1red |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑎 < 0 ) → 1 ∈ ℝ ) |
| 90 |
|
simpl |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑎 < 0 ) → 𝑎 ∈ ℝ ) |
| 91 |
|
lt0ne0 |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑎 < 0 ) → 𝑎 ≠ 0 ) |
| 92 |
89 90 91
|
redivcld |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑎 < 0 ) → ( 1 / 𝑎 ) ∈ ℝ ) |
| 93 |
92
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) → ( 1 / 𝑎 ) ∈ ℝ ) |
| 94 |
93
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) → ( 1 / 𝑎 ) ∈ ℝ* ) |
| 95 |
51
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) → 0 ∈ ℝ ) |
| 96 |
95
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) → 0 ∈ ℝ* ) |
| 97 |
77 86 87 80 88 94 96
|
smfpimioompt |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) → { 𝑥 ∈ 𝐶 ∣ 𝐵 ∈ ( ( 1 / 𝑎 ) (,) 0 ) } ∈ ( 𝑆 ↾t 𝐶 ) ) |
| 98 |
85 97
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ 𝑎 < 0 ) → { 𝑥 ∈ 𝐶 ∣ ( 1 / 𝐵 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐶 ) ) |
| 99 |
68 75 98
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ¬ 0 < 𝑎 ) ∧ ¬ 𝑎 = 0 ) → { 𝑥 ∈ 𝐶 ∣ ( 1 / 𝐵 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐶 ) ) |
| 100 |
67 99
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) ∧ ¬ 0 < 𝑎 ) → { 𝑥 ∈ 𝐶 ∣ ( 1 / 𝐵 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐶 ) ) |
| 101 |
55 100
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ 𝐶 ∣ ( 1 / 𝐵 ) < 𝑎 } ∈ ( 𝑆 ↾t 𝐶 ) ) |
| 102 |
1 7 2 16 26 101
|
issmfdmpt |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↦ ( 1 / 𝐵 ) ) ∈ ( SMblFn ‘ 𝑆 ) ) |