Step |
Hyp |
Ref |
Expression |
1 |
|
smfres.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
2 |
|
smfres.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
3 |
|
smfres.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
4 |
|
nfv |
⊢ Ⅎ 𝑎 𝜑 |
5 |
|
inss1 |
⊢ ( dom 𝐹 ∩ 𝐴 ) ⊆ dom 𝐹 |
6 |
5
|
a1i |
⊢ ( 𝜑 → ( dom 𝐹 ∩ 𝐴 ) ⊆ dom 𝐹 ) |
7 |
|
eqid |
⊢ dom 𝐹 = dom 𝐹 |
8 |
1 2 7
|
smfdmss |
⊢ ( 𝜑 → dom 𝐹 ⊆ ∪ 𝑆 ) |
9 |
6 8
|
sstrd |
⊢ ( 𝜑 → ( dom 𝐹 ∩ 𝐴 ) ⊆ ∪ 𝑆 ) |
10 |
1 2 7
|
smff |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ ℝ ) |
11 |
|
fresin |
⊢ ( 𝐹 : dom 𝐹 ⟶ ℝ → ( 𝐹 ↾ 𝐴 ) : ( dom 𝐹 ∩ 𝐴 ) ⟶ ℝ ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) : ( dom 𝐹 ∩ 𝐴 ) ⟶ ℝ ) |
13 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( 𝑆 ↾t dom 𝐹 ) ∈ V ) |
14 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝐴 ∈ 𝑉 ) |
15 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝑆 ∈ SAlg ) |
16 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
17 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
18 |
17
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → -∞ ∈ ℝ* ) |
19 |
|
rexr |
⊢ ( 𝑎 ∈ ℝ → 𝑎 ∈ ℝ* ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → 𝑎 ∈ ℝ* ) |
21 |
15 16 7 18 20
|
smfpimioo |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∈ ( 𝑆 ↾t dom 𝐹 ) ) |
22 |
|
eqid |
⊢ ( ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∩ 𝐴 ) = ( ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∩ 𝐴 ) |
23 |
13 14 21 22
|
elrestd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∩ 𝐴 ) ∈ ( ( 𝑆 ↾t dom 𝐹 ) ↾t 𝐴 ) ) |
24 |
10
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
25 |
|
respreima |
⊢ ( Fun 𝐹 → ( ◡ ( 𝐹 ↾ 𝐴 ) “ ( -∞ (,) 𝑎 ) ) = ( ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∩ 𝐴 ) ) |
26 |
24 25
|
syl |
⊢ ( 𝜑 → ( ◡ ( 𝐹 ↾ 𝐴 ) “ ( -∞ (,) 𝑎 ) ) = ( ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∩ 𝐴 ) ) |
27 |
26
|
eqcomd |
⊢ ( 𝜑 → ( ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∩ 𝐴 ) = ( ◡ ( 𝐹 ↾ 𝐴 ) “ ( -∞ (,) 𝑎 ) ) ) |
28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∩ 𝐴 ) = ( ◡ ( 𝐹 ↾ 𝐴 ) “ ( -∞ (,) 𝑎 ) ) ) |
29 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( 𝐹 ↾ 𝐴 ) : ( dom 𝐹 ∩ 𝐴 ) ⟶ ℝ ) |
30 |
29 20
|
preimaioomnf |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( ◡ ( 𝐹 ↾ 𝐴 ) “ ( -∞ (,) 𝑎 ) ) = { 𝑥 ∈ ( dom 𝐹 ∩ 𝐴 ) ∣ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) < 𝑎 } ) |
31 |
28 30
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ ( dom 𝐹 ∩ 𝐴 ) ∣ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) < 𝑎 } = ( ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∩ 𝐴 ) ) |
32 |
2
|
dmexd |
⊢ ( 𝜑 → dom 𝐹 ∈ V ) |
33 |
|
restco |
⊢ ( ( 𝑆 ∈ SAlg ∧ dom 𝐹 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑆 ↾t dom 𝐹 ) ↾t 𝐴 ) = ( 𝑆 ↾t ( dom 𝐹 ∩ 𝐴 ) ) ) |
34 |
1 32 3 33
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑆 ↾t dom 𝐹 ) ↾t 𝐴 ) = ( 𝑆 ↾t ( dom 𝐹 ∩ 𝐴 ) ) ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( ( 𝑆 ↾t dom 𝐹 ) ↾t 𝐴 ) = ( 𝑆 ↾t ( dom 𝐹 ∩ 𝐴 ) ) ) |
36 |
35
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( 𝑆 ↾t ( dom 𝐹 ∩ 𝐴 ) ) = ( ( 𝑆 ↾t dom 𝐹 ) ↾t 𝐴 ) ) |
37 |
31 36
|
eleq12d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → ( { 𝑥 ∈ ( dom 𝐹 ∩ 𝐴 ) ∣ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t ( dom 𝐹 ∩ 𝐴 ) ) ↔ ( ( ◡ 𝐹 “ ( -∞ (,) 𝑎 ) ) ∩ 𝐴 ) ∈ ( ( 𝑆 ↾t dom 𝐹 ) ↾t 𝐴 ) ) ) |
38 |
23 37
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℝ ) → { 𝑥 ∈ ( dom 𝐹 ∩ 𝐴 ) ∣ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑥 ) < 𝑎 } ∈ ( 𝑆 ↾t ( dom 𝐹 ∩ 𝐴 ) ) ) |
39 |
4 1 9 12 38
|
issmfd |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) ∈ ( SMblFn ‘ 𝑆 ) ) |