| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfres.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 2 |  | smfres.f | ⊢ ( 𝜑  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 3 |  | smfres.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 4 |  | nfv | ⊢ Ⅎ 𝑎 𝜑 | 
						
							| 5 |  | inss1 | ⊢ ( dom  𝐹  ∩  𝐴 )  ⊆  dom  𝐹 | 
						
							| 6 | 5 | a1i | ⊢ ( 𝜑  →  ( dom  𝐹  ∩  𝐴 )  ⊆  dom  𝐹 ) | 
						
							| 7 |  | eqid | ⊢ dom  𝐹  =  dom  𝐹 | 
						
							| 8 | 1 2 7 | smfdmss | ⊢ ( 𝜑  →  dom  𝐹  ⊆  ∪  𝑆 ) | 
						
							| 9 | 6 8 | sstrd | ⊢ ( 𝜑  →  ( dom  𝐹  ∩  𝐴 )  ⊆  ∪  𝑆 ) | 
						
							| 10 | 1 2 7 | smff | ⊢ ( 𝜑  →  𝐹 : dom  𝐹 ⟶ ℝ ) | 
						
							| 11 |  | fresin | ⊢ ( 𝐹 : dom  𝐹 ⟶ ℝ  →  ( 𝐹  ↾  𝐴 ) : ( dom  𝐹  ∩  𝐴 ) ⟶ ℝ ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐴 ) : ( dom  𝐹  ∩  𝐴 ) ⟶ ℝ ) | 
						
							| 13 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( 𝑆  ↾t  dom  𝐹 )  ∈  V ) | 
						
							| 14 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝐴  ∈  𝑉 ) | 
						
							| 15 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝑆  ∈  SAlg ) | 
						
							| 16 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 17 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 18 | 17 | a1i | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  -∞  ∈  ℝ* ) | 
						
							| 19 |  | rexr | ⊢ ( 𝑎  ∈  ℝ  →  𝑎  ∈  ℝ* ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝑎  ∈  ℝ* ) | 
						
							| 21 | 15 16 7 18 20 | smfpimioo | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) | 
						
							| 22 |  | eqid | ⊢ ( ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∩  𝐴 )  =  ( ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∩  𝐴 ) | 
						
							| 23 | 13 14 21 22 | elrestd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∩  𝐴 )  ∈  ( ( 𝑆  ↾t  dom  𝐹 )  ↾t  𝐴 ) ) | 
						
							| 24 | 10 | ffund | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 25 |  | respreima | ⊢ ( Fun  𝐹  →  ( ◡ ( 𝐹  ↾  𝐴 )  “  ( -∞ (,) 𝑎 ) )  =  ( ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∩  𝐴 ) ) | 
						
							| 26 | 24 25 | syl | ⊢ ( 𝜑  →  ( ◡ ( 𝐹  ↾  𝐴 )  “  ( -∞ (,) 𝑎 ) )  =  ( ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∩  𝐴 ) ) | 
						
							| 27 | 26 | eqcomd | ⊢ ( 𝜑  →  ( ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∩  𝐴 )  =  ( ◡ ( 𝐹  ↾  𝐴 )  “  ( -∞ (,) 𝑎 ) ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∩  𝐴 )  =  ( ◡ ( 𝐹  ↾  𝐴 )  “  ( -∞ (,) 𝑎 ) ) ) | 
						
							| 29 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( 𝐹  ↾  𝐴 ) : ( dom  𝐹  ∩  𝐴 ) ⟶ ℝ ) | 
						
							| 30 | 29 20 | preimaioomnf | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( ◡ ( 𝐹  ↾  𝐴 )  “  ( -∞ (,) 𝑎 ) )  =  { 𝑥  ∈  ( dom  𝐹  ∩  𝐴 )  ∣  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑥 )  <  𝑎 } ) | 
						
							| 31 | 28 30 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  ( dom  𝐹  ∩  𝐴 )  ∣  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑥 )  <  𝑎 }  =  ( ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∩  𝐴 ) ) | 
						
							| 32 | 2 | dmexd | ⊢ ( 𝜑  →  dom  𝐹  ∈  V ) | 
						
							| 33 |  | restco | ⊢ ( ( 𝑆  ∈  SAlg  ∧  dom  𝐹  ∈  V  ∧  𝐴  ∈  𝑉 )  →  ( ( 𝑆  ↾t  dom  𝐹 )  ↾t  𝐴 )  =  ( 𝑆  ↾t  ( dom  𝐹  ∩  𝐴 ) ) ) | 
						
							| 34 | 1 32 3 33 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑆  ↾t  dom  𝐹 )  ↾t  𝐴 )  =  ( 𝑆  ↾t  ( dom  𝐹  ∩  𝐴 ) ) ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( ( 𝑆  ↾t  dom  𝐹 )  ↾t  𝐴 )  =  ( 𝑆  ↾t  ( dom  𝐹  ∩  𝐴 ) ) ) | 
						
							| 36 | 35 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( 𝑆  ↾t  ( dom  𝐹  ∩  𝐴 ) )  =  ( ( 𝑆  ↾t  dom  𝐹 )  ↾t  𝐴 ) ) | 
						
							| 37 | 31 36 | eleq12d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( { 𝑥  ∈  ( dom  𝐹  ∩  𝐴 )  ∣  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  ( dom  𝐹  ∩  𝐴 ) )  ↔  ( ( ◡ 𝐹  “  ( -∞ (,) 𝑎 ) )  ∩  𝐴 )  ∈  ( ( 𝑆  ↾t  dom  𝐹 )  ↾t  𝐴 ) ) ) | 
						
							| 38 | 23 37 | mpbird | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  ( dom  𝐹  ∩  𝐴 )  ∣  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑥 )  <  𝑎 }  ∈  ( 𝑆  ↾t  ( dom  𝐹  ∩  𝐴 ) ) ) | 
						
							| 39 | 4 1 9 12 38 | issmfd | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐴 )  ∈  ( SMblFn ‘ 𝑆 ) ) |