| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfres.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 2 |  | smfres.f |  |-  ( ph -> F e. ( SMblFn ` S ) ) | 
						
							| 3 |  | smfres.a |  |-  ( ph -> A e. V ) | 
						
							| 4 |  | nfv |  |-  F/ a ph | 
						
							| 5 |  | inss1 |  |-  ( dom F i^i A ) C_ dom F | 
						
							| 6 | 5 | a1i |  |-  ( ph -> ( dom F i^i A ) C_ dom F ) | 
						
							| 7 |  | eqid |  |-  dom F = dom F | 
						
							| 8 | 1 2 7 | smfdmss |  |-  ( ph -> dom F C_ U. S ) | 
						
							| 9 | 6 8 | sstrd |  |-  ( ph -> ( dom F i^i A ) C_ U. S ) | 
						
							| 10 | 1 2 7 | smff |  |-  ( ph -> F : dom F --> RR ) | 
						
							| 11 |  | fresin |  |-  ( F : dom F --> RR -> ( F |` A ) : ( dom F i^i A ) --> RR ) | 
						
							| 12 | 10 11 | syl |  |-  ( ph -> ( F |` A ) : ( dom F i^i A ) --> RR ) | 
						
							| 13 |  | ovexd |  |-  ( ( ph /\ a e. RR ) -> ( S |`t dom F ) e. _V ) | 
						
							| 14 | 3 | adantr |  |-  ( ( ph /\ a e. RR ) -> A e. V ) | 
						
							| 15 | 1 | adantr |  |-  ( ( ph /\ a e. RR ) -> S e. SAlg ) | 
						
							| 16 | 2 | adantr |  |-  ( ( ph /\ a e. RR ) -> F e. ( SMblFn ` S ) ) | 
						
							| 17 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 18 | 17 | a1i |  |-  ( ( ph /\ a e. RR ) -> -oo e. RR* ) | 
						
							| 19 |  | rexr |  |-  ( a e. RR -> a e. RR* ) | 
						
							| 20 | 19 | adantl |  |-  ( ( ph /\ a e. RR ) -> a e. RR* ) | 
						
							| 21 | 15 16 7 18 20 | smfpimioo |  |-  ( ( ph /\ a e. RR ) -> ( `' F " ( -oo (,) a ) ) e. ( S |`t dom F ) ) | 
						
							| 22 |  | eqid |  |-  ( ( `' F " ( -oo (,) a ) ) i^i A ) = ( ( `' F " ( -oo (,) a ) ) i^i A ) | 
						
							| 23 | 13 14 21 22 | elrestd |  |-  ( ( ph /\ a e. RR ) -> ( ( `' F " ( -oo (,) a ) ) i^i A ) e. ( ( S |`t dom F ) |`t A ) ) | 
						
							| 24 | 10 | ffund |  |-  ( ph -> Fun F ) | 
						
							| 25 |  | respreima |  |-  ( Fun F -> ( `' ( F |` A ) " ( -oo (,) a ) ) = ( ( `' F " ( -oo (,) a ) ) i^i A ) ) | 
						
							| 26 | 24 25 | syl |  |-  ( ph -> ( `' ( F |` A ) " ( -oo (,) a ) ) = ( ( `' F " ( -oo (,) a ) ) i^i A ) ) | 
						
							| 27 | 26 | eqcomd |  |-  ( ph -> ( ( `' F " ( -oo (,) a ) ) i^i A ) = ( `' ( F |` A ) " ( -oo (,) a ) ) ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ph /\ a e. RR ) -> ( ( `' F " ( -oo (,) a ) ) i^i A ) = ( `' ( F |` A ) " ( -oo (,) a ) ) ) | 
						
							| 29 | 12 | adantr |  |-  ( ( ph /\ a e. RR ) -> ( F |` A ) : ( dom F i^i A ) --> RR ) | 
						
							| 30 | 29 20 | preimaioomnf |  |-  ( ( ph /\ a e. RR ) -> ( `' ( F |` A ) " ( -oo (,) a ) ) = { x e. ( dom F i^i A ) | ( ( F |` A ) ` x ) < a } ) | 
						
							| 31 | 28 30 | eqtr2d |  |-  ( ( ph /\ a e. RR ) -> { x e. ( dom F i^i A ) | ( ( F |` A ) ` x ) < a } = ( ( `' F " ( -oo (,) a ) ) i^i A ) ) | 
						
							| 32 | 2 | dmexd |  |-  ( ph -> dom F e. _V ) | 
						
							| 33 |  | restco |  |-  ( ( S e. SAlg /\ dom F e. _V /\ A e. V ) -> ( ( S |`t dom F ) |`t A ) = ( S |`t ( dom F i^i A ) ) ) | 
						
							| 34 | 1 32 3 33 | syl3anc |  |-  ( ph -> ( ( S |`t dom F ) |`t A ) = ( S |`t ( dom F i^i A ) ) ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ph /\ a e. RR ) -> ( ( S |`t dom F ) |`t A ) = ( S |`t ( dom F i^i A ) ) ) | 
						
							| 36 | 35 | eqcomd |  |-  ( ( ph /\ a e. RR ) -> ( S |`t ( dom F i^i A ) ) = ( ( S |`t dom F ) |`t A ) ) | 
						
							| 37 | 31 36 | eleq12d |  |-  ( ( ph /\ a e. RR ) -> ( { x e. ( dom F i^i A ) | ( ( F |` A ) ` x ) < a } e. ( S |`t ( dom F i^i A ) ) <-> ( ( `' F " ( -oo (,) a ) ) i^i A ) e. ( ( S |`t dom F ) |`t A ) ) ) | 
						
							| 38 | 23 37 | mpbird |  |-  ( ( ph /\ a e. RR ) -> { x e. ( dom F i^i A ) | ( ( F |` A ) ` x ) < a } e. ( S |`t ( dom F i^i A ) ) ) | 
						
							| 39 | 4 1 9 12 38 | issmfd |  |-  ( ph -> ( F |` A ) e. ( SMblFn ` S ) ) |