Step |
Hyp |
Ref |
Expression |
1 |
|
smfres.s |
|- ( ph -> S e. SAlg ) |
2 |
|
smfres.f |
|- ( ph -> F e. ( SMblFn ` S ) ) |
3 |
|
smfres.a |
|- ( ph -> A e. V ) |
4 |
|
nfv |
|- F/ a ph |
5 |
|
inss1 |
|- ( dom F i^i A ) C_ dom F |
6 |
5
|
a1i |
|- ( ph -> ( dom F i^i A ) C_ dom F ) |
7 |
|
eqid |
|- dom F = dom F |
8 |
1 2 7
|
smfdmss |
|- ( ph -> dom F C_ U. S ) |
9 |
6 8
|
sstrd |
|- ( ph -> ( dom F i^i A ) C_ U. S ) |
10 |
1 2 7
|
smff |
|- ( ph -> F : dom F --> RR ) |
11 |
|
fresin |
|- ( F : dom F --> RR -> ( F |` A ) : ( dom F i^i A ) --> RR ) |
12 |
10 11
|
syl |
|- ( ph -> ( F |` A ) : ( dom F i^i A ) --> RR ) |
13 |
|
ovexd |
|- ( ( ph /\ a e. RR ) -> ( S |`t dom F ) e. _V ) |
14 |
3
|
adantr |
|- ( ( ph /\ a e. RR ) -> A e. V ) |
15 |
1
|
adantr |
|- ( ( ph /\ a e. RR ) -> S e. SAlg ) |
16 |
2
|
adantr |
|- ( ( ph /\ a e. RR ) -> F e. ( SMblFn ` S ) ) |
17 |
|
mnfxr |
|- -oo e. RR* |
18 |
17
|
a1i |
|- ( ( ph /\ a e. RR ) -> -oo e. RR* ) |
19 |
|
rexr |
|- ( a e. RR -> a e. RR* ) |
20 |
19
|
adantl |
|- ( ( ph /\ a e. RR ) -> a e. RR* ) |
21 |
15 16 7 18 20
|
smfpimioo |
|- ( ( ph /\ a e. RR ) -> ( `' F " ( -oo (,) a ) ) e. ( S |`t dom F ) ) |
22 |
|
eqid |
|- ( ( `' F " ( -oo (,) a ) ) i^i A ) = ( ( `' F " ( -oo (,) a ) ) i^i A ) |
23 |
13 14 21 22
|
elrestd |
|- ( ( ph /\ a e. RR ) -> ( ( `' F " ( -oo (,) a ) ) i^i A ) e. ( ( S |`t dom F ) |`t A ) ) |
24 |
10
|
ffund |
|- ( ph -> Fun F ) |
25 |
|
respreima |
|- ( Fun F -> ( `' ( F |` A ) " ( -oo (,) a ) ) = ( ( `' F " ( -oo (,) a ) ) i^i A ) ) |
26 |
24 25
|
syl |
|- ( ph -> ( `' ( F |` A ) " ( -oo (,) a ) ) = ( ( `' F " ( -oo (,) a ) ) i^i A ) ) |
27 |
26
|
eqcomd |
|- ( ph -> ( ( `' F " ( -oo (,) a ) ) i^i A ) = ( `' ( F |` A ) " ( -oo (,) a ) ) ) |
28 |
27
|
adantr |
|- ( ( ph /\ a e. RR ) -> ( ( `' F " ( -oo (,) a ) ) i^i A ) = ( `' ( F |` A ) " ( -oo (,) a ) ) ) |
29 |
12
|
adantr |
|- ( ( ph /\ a e. RR ) -> ( F |` A ) : ( dom F i^i A ) --> RR ) |
30 |
29 20
|
preimaioomnf |
|- ( ( ph /\ a e. RR ) -> ( `' ( F |` A ) " ( -oo (,) a ) ) = { x e. ( dom F i^i A ) | ( ( F |` A ) ` x ) < a } ) |
31 |
28 30
|
eqtr2d |
|- ( ( ph /\ a e. RR ) -> { x e. ( dom F i^i A ) | ( ( F |` A ) ` x ) < a } = ( ( `' F " ( -oo (,) a ) ) i^i A ) ) |
32 |
2
|
dmexd |
|- ( ph -> dom F e. _V ) |
33 |
|
restco |
|- ( ( S e. SAlg /\ dom F e. _V /\ A e. V ) -> ( ( S |`t dom F ) |`t A ) = ( S |`t ( dom F i^i A ) ) ) |
34 |
1 32 3 33
|
syl3anc |
|- ( ph -> ( ( S |`t dom F ) |`t A ) = ( S |`t ( dom F i^i A ) ) ) |
35 |
34
|
adantr |
|- ( ( ph /\ a e. RR ) -> ( ( S |`t dom F ) |`t A ) = ( S |`t ( dom F i^i A ) ) ) |
36 |
35
|
eqcomd |
|- ( ( ph /\ a e. RR ) -> ( S |`t ( dom F i^i A ) ) = ( ( S |`t dom F ) |`t A ) ) |
37 |
31 36
|
eleq12d |
|- ( ( ph /\ a e. RR ) -> ( { x e. ( dom F i^i A ) | ( ( F |` A ) ` x ) < a } e. ( S |`t ( dom F i^i A ) ) <-> ( ( `' F " ( -oo (,) a ) ) i^i A ) e. ( ( S |`t dom F ) |`t A ) ) ) |
38 |
23 37
|
mpbird |
|- ( ( ph /\ a e. RR ) -> { x e. ( dom F i^i A ) | ( ( F |` A ) ` x ) < a } e. ( S |`t ( dom F i^i A ) ) ) |
39 |
4 1 9 12 38
|
issmfd |
|- ( ph -> ( F |` A ) e. ( SMblFn ` S ) ) |