| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfmullem1.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | smfmullem1.u |  |-  ( ph -> U e. RR ) | 
						
							| 3 |  | smfmullem1.v |  |-  ( ph -> V e. RR ) | 
						
							| 4 |  | smfmullem1.l |  |-  ( ph -> ( U x. V ) < A ) | 
						
							| 5 |  | smfmullem1.x |  |-  X = ( ( A - ( U x. V ) ) / ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) | 
						
							| 6 |  | smfmullem1.y |  |-  Y = if ( 1 <_ X , 1 , X ) | 
						
							| 7 |  | smfmullem1.p |  |-  ( ph -> P e. ( ( U - Y ) (,) U ) ) | 
						
							| 8 |  | smfmullem1.r |  |-  ( ph -> R e. ( U (,) ( U + Y ) ) ) | 
						
							| 9 |  | smfmullem1.s |  |-  ( ph -> S e. ( ( V - Y ) (,) V ) ) | 
						
							| 10 |  | smfmullem1.z |  |-  ( ph -> Z e. ( V (,) ( V + Y ) ) ) | 
						
							| 11 |  | smfmullem1.h |  |-  ( ph -> H e. ( P (,) R ) ) | 
						
							| 12 |  | smfmullem1.i |  |-  ( ph -> I e. ( S (,) Z ) ) | 
						
							| 13 | 11 | elioored |  |-  ( ph -> H e. RR ) | 
						
							| 14 | 13 | recnd |  |-  ( ph -> H e. CC ) | 
						
							| 15 | 2 | recnd |  |-  ( ph -> U e. CC ) | 
						
							| 16 | 12 | elioored |  |-  ( ph -> I e. RR ) | 
						
							| 17 | 16 | recnd |  |-  ( ph -> I e. CC ) | 
						
							| 18 | 3 | recnd |  |-  ( ph -> V e. CC ) | 
						
							| 19 | 14 15 17 18 | mulsubd |  |-  ( ph -> ( ( H - U ) x. ( I - V ) ) = ( ( ( H x. I ) + ( V x. U ) ) - ( ( H x. V ) + ( I x. U ) ) ) ) | 
						
							| 20 | 14 15 18 | subdird |  |-  ( ph -> ( ( H - U ) x. V ) = ( ( H x. V ) - ( U x. V ) ) ) | 
						
							| 21 | 15 17 18 | subdid |  |-  ( ph -> ( U x. ( I - V ) ) = ( ( U x. I ) - ( U x. V ) ) ) | 
						
							| 22 | 20 21 | oveq12d |  |-  ( ph -> ( ( ( H - U ) x. V ) + ( U x. ( I - V ) ) ) = ( ( ( H x. V ) - ( U x. V ) ) + ( ( U x. I ) - ( U x. V ) ) ) ) | 
						
							| 23 | 14 18 | mulcld |  |-  ( ph -> ( H x. V ) e. CC ) | 
						
							| 24 | 15 17 | mulcld |  |-  ( ph -> ( U x. I ) e. CC ) | 
						
							| 25 | 15 18 | mulcld |  |-  ( ph -> ( U x. V ) e. CC ) | 
						
							| 26 | 23 24 25 25 | addsub4d |  |-  ( ph -> ( ( ( H x. V ) + ( U x. I ) ) - ( ( U x. V ) + ( U x. V ) ) ) = ( ( ( H x. V ) - ( U x. V ) ) + ( ( U x. I ) - ( U x. V ) ) ) ) | 
						
							| 27 | 26 | eqcomd |  |-  ( ph -> ( ( ( H x. V ) - ( U x. V ) ) + ( ( U x. I ) - ( U x. V ) ) ) = ( ( ( H x. V ) + ( U x. I ) ) - ( ( U x. V ) + ( U x. V ) ) ) ) | 
						
							| 28 | 15 17 | mulcomd |  |-  ( ph -> ( U x. I ) = ( I x. U ) ) | 
						
							| 29 | 28 | oveq2d |  |-  ( ph -> ( ( H x. V ) + ( U x. I ) ) = ( ( H x. V ) + ( I x. U ) ) ) | 
						
							| 30 | 29 | oveq1d |  |-  ( ph -> ( ( ( H x. V ) + ( U x. I ) ) - ( ( U x. V ) + ( U x. V ) ) ) = ( ( ( H x. V ) + ( I x. U ) ) - ( ( U x. V ) + ( U x. V ) ) ) ) | 
						
							| 31 | 22 27 30 | 3eqtrd |  |-  ( ph -> ( ( ( H - U ) x. V ) + ( U x. ( I - V ) ) ) = ( ( ( H x. V ) + ( I x. U ) ) - ( ( U x. V ) + ( U x. V ) ) ) ) | 
						
							| 32 | 19 31 | oveq12d |  |-  ( ph -> ( ( ( H - U ) x. ( I - V ) ) + ( ( ( H - U ) x. V ) + ( U x. ( I - V ) ) ) ) = ( ( ( ( H x. I ) + ( V x. U ) ) - ( ( H x. V ) + ( I x. U ) ) ) + ( ( ( H x. V ) + ( I x. U ) ) - ( ( U x. V ) + ( U x. V ) ) ) ) ) | 
						
							| 33 | 14 17 | mulcld |  |-  ( ph -> ( H x. I ) e. CC ) | 
						
							| 34 | 18 15 | mulcld |  |-  ( ph -> ( V x. U ) e. CC ) | 
						
							| 35 | 33 34 | addcld |  |-  ( ph -> ( ( H x. I ) + ( V x. U ) ) e. CC ) | 
						
							| 36 | 17 15 | mulcld |  |-  ( ph -> ( I x. U ) e. CC ) | 
						
							| 37 | 23 36 | addcld |  |-  ( ph -> ( ( H x. V ) + ( I x. U ) ) e. CC ) | 
						
							| 38 | 35 37 | npcand |  |-  ( ph -> ( ( ( ( H x. I ) + ( V x. U ) ) - ( ( H x. V ) + ( I x. U ) ) ) + ( ( H x. V ) + ( I x. U ) ) ) = ( ( H x. I ) + ( V x. U ) ) ) | 
						
							| 39 | 18 15 | mulcomd |  |-  ( ph -> ( V x. U ) = ( U x. V ) ) | 
						
							| 40 | 39 | oveq2d |  |-  ( ph -> ( ( H x. I ) + ( V x. U ) ) = ( ( H x. I ) + ( U x. V ) ) ) | 
						
							| 41 | 38 40 | eqtrd |  |-  ( ph -> ( ( ( ( H x. I ) + ( V x. U ) ) - ( ( H x. V ) + ( I x. U ) ) ) + ( ( H x. V ) + ( I x. U ) ) ) = ( ( H x. I ) + ( U x. V ) ) ) | 
						
							| 42 | 41 | eqcomd |  |-  ( ph -> ( ( H x. I ) + ( U x. V ) ) = ( ( ( ( H x. I ) + ( V x. U ) ) - ( ( H x. V ) + ( I x. U ) ) ) + ( ( H x. V ) + ( I x. U ) ) ) ) | 
						
							| 43 | 42 | oveq1d |  |-  ( ph -> ( ( ( H x. I ) + ( U x. V ) ) - ( ( U x. V ) + ( U x. V ) ) ) = ( ( ( ( ( H x. I ) + ( V x. U ) ) - ( ( H x. V ) + ( I x. U ) ) ) + ( ( H x. V ) + ( I x. U ) ) ) - ( ( U x. V ) + ( U x. V ) ) ) ) | 
						
							| 44 | 35 37 | subcld |  |-  ( ph -> ( ( ( H x. I ) + ( V x. U ) ) - ( ( H x. V ) + ( I x. U ) ) ) e. CC ) | 
						
							| 45 | 25 25 | addcld |  |-  ( ph -> ( ( U x. V ) + ( U x. V ) ) e. CC ) | 
						
							| 46 | 44 37 45 | addsubassd |  |-  ( ph -> ( ( ( ( ( H x. I ) + ( V x. U ) ) - ( ( H x. V ) + ( I x. U ) ) ) + ( ( H x. V ) + ( I x. U ) ) ) - ( ( U x. V ) + ( U x. V ) ) ) = ( ( ( ( H x. I ) + ( V x. U ) ) - ( ( H x. V ) + ( I x. U ) ) ) + ( ( ( H x. V ) + ( I x. U ) ) - ( ( U x. V ) + ( U x. V ) ) ) ) ) | 
						
							| 47 | 43 46 | eqtr2d |  |-  ( ph -> ( ( ( ( H x. I ) + ( V x. U ) ) - ( ( H x. V ) + ( I x. U ) ) ) + ( ( ( H x. V ) + ( I x. U ) ) - ( ( U x. V ) + ( U x. V ) ) ) ) = ( ( ( H x. I ) + ( U x. V ) ) - ( ( U x. V ) + ( U x. V ) ) ) ) | 
						
							| 48 | 33 25 25 | pnpcan2d |  |-  ( ph -> ( ( ( H x. I ) + ( U x. V ) ) - ( ( U x. V ) + ( U x. V ) ) ) = ( ( H x. I ) - ( U x. V ) ) ) | 
						
							| 49 | 32 47 48 | 3eqtrrd |  |-  ( ph -> ( ( H x. I ) - ( U x. V ) ) = ( ( ( H - U ) x. ( I - V ) ) + ( ( ( H - U ) x. V ) + ( U x. ( I - V ) ) ) ) ) | 
						
							| 50 | 13 2 | jca |  |-  ( ph -> ( H e. RR /\ U e. RR ) ) | 
						
							| 51 |  | resubcl |  |-  ( ( H e. RR /\ U e. RR ) -> ( H - U ) e. RR ) | 
						
							| 52 | 50 51 | syl |  |-  ( ph -> ( H - U ) e. RR ) | 
						
							| 53 | 16 3 | jca |  |-  ( ph -> ( I e. RR /\ V e. RR ) ) | 
						
							| 54 |  | resubcl |  |-  ( ( I e. RR /\ V e. RR ) -> ( I - V ) e. RR ) | 
						
							| 55 | 53 54 | syl |  |-  ( ph -> ( I - V ) e. RR ) | 
						
							| 56 | 52 55 | jca |  |-  ( ph -> ( ( H - U ) e. RR /\ ( I - V ) e. RR ) ) | 
						
							| 57 |  | remulcl |  |-  ( ( ( H - U ) e. RR /\ ( I - V ) e. RR ) -> ( ( H - U ) x. ( I - V ) ) e. RR ) | 
						
							| 58 | 56 57 | syl |  |-  ( ph -> ( ( H - U ) x. ( I - V ) ) e. RR ) | 
						
							| 59 | 52 3 | jca |  |-  ( ph -> ( ( H - U ) e. RR /\ V e. RR ) ) | 
						
							| 60 |  | remulcl |  |-  ( ( ( H - U ) e. RR /\ V e. RR ) -> ( ( H - U ) x. V ) e. RR ) | 
						
							| 61 | 59 60 | syl |  |-  ( ph -> ( ( H - U ) x. V ) e. RR ) | 
						
							| 62 | 2 55 | jca |  |-  ( ph -> ( U e. RR /\ ( I - V ) e. RR ) ) | 
						
							| 63 |  | remulcl |  |-  ( ( U e. RR /\ ( I - V ) e. RR ) -> ( U x. ( I - V ) ) e. RR ) | 
						
							| 64 | 62 63 | syl |  |-  ( ph -> ( U x. ( I - V ) ) e. RR ) | 
						
							| 65 | 61 64 | jca |  |-  ( ph -> ( ( ( H - U ) x. V ) e. RR /\ ( U x. ( I - V ) ) e. RR ) ) | 
						
							| 66 |  | readdcl |  |-  ( ( ( ( H - U ) x. V ) e. RR /\ ( U x. ( I - V ) ) e. RR ) -> ( ( ( H - U ) x. V ) + ( U x. ( I - V ) ) ) e. RR ) | 
						
							| 67 | 65 66 | syl |  |-  ( ph -> ( ( ( H - U ) x. V ) + ( U x. ( I - V ) ) ) e. RR ) | 
						
							| 68 | 58 67 | jca |  |-  ( ph -> ( ( ( H - U ) x. ( I - V ) ) e. RR /\ ( ( ( H - U ) x. V ) + ( U x. ( I - V ) ) ) e. RR ) ) | 
						
							| 69 |  | readdcl |  |-  ( ( ( ( H - U ) x. ( I - V ) ) e. RR /\ ( ( ( H - U ) x. V ) + ( U x. ( I - V ) ) ) e. RR ) -> ( ( ( H - U ) x. ( I - V ) ) + ( ( ( H - U ) x. V ) + ( U x. ( I - V ) ) ) ) e. RR ) | 
						
							| 70 | 68 69 | syl |  |-  ( ph -> ( ( ( H - U ) x. ( I - V ) ) + ( ( ( H - U ) x. V ) + ( U x. ( I - V ) ) ) ) e. RR ) | 
						
							| 71 | 6 | a1i |  |-  ( ph -> Y = if ( 1 <_ X , 1 , X ) ) | 
						
							| 72 |  | 1rp |  |-  1 e. RR+ | 
						
							| 73 | 72 | a1i |  |-  ( ph -> 1 e. RR+ ) | 
						
							| 74 | 5 | a1i |  |-  ( ph -> X = ( ( A - ( U x. V ) ) / ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) ) | 
						
							| 75 | 2 3 | remulcld |  |-  ( ph -> ( U x. V ) e. RR ) | 
						
							| 76 |  | difrp |  |-  ( ( ( U x. V ) e. RR /\ A e. RR ) -> ( ( U x. V ) < A <-> ( A - ( U x. V ) ) e. RR+ ) ) | 
						
							| 77 | 75 1 76 | syl2anc |  |-  ( ph -> ( ( U x. V ) < A <-> ( A - ( U x. V ) ) e. RR+ ) ) | 
						
							| 78 | 4 77 | mpbid |  |-  ( ph -> ( A - ( U x. V ) ) e. RR+ ) | 
						
							| 79 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 80 | 15 | abscld |  |-  ( ph -> ( abs ` U ) e. RR ) | 
						
							| 81 | 18 | abscld |  |-  ( ph -> ( abs ` V ) e. RR ) | 
						
							| 82 | 80 81 | readdcld |  |-  ( ph -> ( ( abs ` U ) + ( abs ` V ) ) e. RR ) | 
						
							| 83 | 79 82 | readdcld |  |-  ( ph -> ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) e. RR ) | 
						
							| 84 |  | 0re |  |-  0 e. RR | 
						
							| 85 | 84 | a1i |  |-  ( ph -> 0 e. RR ) | 
						
							| 86 | 73 | rpgt0d |  |-  ( ph -> 0 < 1 ) | 
						
							| 87 | 15 | absge0d |  |-  ( ph -> 0 <_ ( abs ` U ) ) | 
						
							| 88 | 18 | absge0d |  |-  ( ph -> 0 <_ ( abs ` V ) ) | 
						
							| 89 | 80 81 | addge01d |  |-  ( ph -> ( 0 <_ ( abs ` V ) <-> ( abs ` U ) <_ ( ( abs ` U ) + ( abs ` V ) ) ) ) | 
						
							| 90 | 88 89 | mpbid |  |-  ( ph -> ( abs ` U ) <_ ( ( abs ` U ) + ( abs ` V ) ) ) | 
						
							| 91 | 85 80 82 87 90 | letrd |  |-  ( ph -> 0 <_ ( ( abs ` U ) + ( abs ` V ) ) ) | 
						
							| 92 | 79 82 | addge01d |  |-  ( ph -> ( 0 <_ ( ( abs ` U ) + ( abs ` V ) ) <-> 1 <_ ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) ) | 
						
							| 93 | 91 92 | mpbid |  |-  ( ph -> 1 <_ ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) | 
						
							| 94 | 85 79 83 86 93 | ltletrd |  |-  ( ph -> 0 < ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) | 
						
							| 95 | 83 94 | elrpd |  |-  ( ph -> ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) e. RR+ ) | 
						
							| 96 | 78 95 | rpdivcld |  |-  ( ph -> ( ( A - ( U x. V ) ) / ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) e. RR+ ) | 
						
							| 97 | 74 96 | eqeltrd |  |-  ( ph -> X e. RR+ ) | 
						
							| 98 | 73 97 | ifcld |  |-  ( ph -> if ( 1 <_ X , 1 , X ) e. RR+ ) | 
						
							| 99 | 71 98 | eqeltrd |  |-  ( ph -> Y e. RR+ ) | 
						
							| 100 | 99 | rpred |  |-  ( ph -> Y e. RR ) | 
						
							| 101 |  | resqcl |  |-  ( Y e. RR -> ( Y ^ 2 ) e. RR ) | 
						
							| 102 | 100 101 | syl |  |-  ( ph -> ( Y ^ 2 ) e. RR ) | 
						
							| 103 | 100 81 | remulcld |  |-  ( ph -> ( Y x. ( abs ` V ) ) e. RR ) | 
						
							| 104 | 100 80 | remulcld |  |-  ( ph -> ( Y x. ( abs ` U ) ) e. RR ) | 
						
							| 105 | 103 104 | jca |  |-  ( ph -> ( ( Y x. ( abs ` V ) ) e. RR /\ ( Y x. ( abs ` U ) ) e. RR ) ) | 
						
							| 106 |  | readdcl |  |-  ( ( ( Y x. ( abs ` V ) ) e. RR /\ ( Y x. ( abs ` U ) ) e. RR ) -> ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) e. RR ) | 
						
							| 107 | 105 106 | syl |  |-  ( ph -> ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) e. RR ) | 
						
							| 108 | 102 107 | jca |  |-  ( ph -> ( ( Y ^ 2 ) e. RR /\ ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) e. RR ) ) | 
						
							| 109 |  | readdcl |  |-  ( ( ( Y ^ 2 ) e. RR /\ ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) e. RR ) -> ( ( Y ^ 2 ) + ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) ) e. RR ) | 
						
							| 110 | 108 109 | syl |  |-  ( ph -> ( ( Y ^ 2 ) + ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) ) e. RR ) | 
						
							| 111 | 1 75 | resubcld |  |-  ( ph -> ( A - ( U x. V ) ) e. RR ) | 
						
							| 112 | 100 | resqcld |  |-  ( ph -> ( Y ^ 2 ) e. RR ) | 
						
							| 113 | 103 104 | readdcld |  |-  ( ph -> ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) e. RR ) | 
						
							| 114 | 19 44 | eqeltrd |  |-  ( ph -> ( ( H - U ) x. ( I - V ) ) e. CC ) | 
						
							| 115 | 114 | abscld |  |-  ( ph -> ( abs ` ( ( H - U ) x. ( I - V ) ) ) e. RR ) | 
						
							| 116 | 100 100 | remulcld |  |-  ( ph -> ( Y x. Y ) e. RR ) | 
						
							| 117 | 58 | leabsd |  |-  ( ph -> ( ( H - U ) x. ( I - V ) ) <_ ( abs ` ( ( H - U ) x. ( I - V ) ) ) ) | 
						
							| 118 | 52 | recnd |  |-  ( ph -> ( H - U ) e. CC ) | 
						
							| 119 | 55 | recnd |  |-  ( ph -> ( I - V ) e. CC ) | 
						
							| 120 | 118 119 | absmuld |  |-  ( ph -> ( abs ` ( ( H - U ) x. ( I - V ) ) ) = ( ( abs ` ( H - U ) ) x. ( abs ` ( I - V ) ) ) ) | 
						
							| 121 | 118 | abscld |  |-  ( ph -> ( abs ` ( H - U ) ) e. RR ) | 
						
							| 122 | 119 | abscld |  |-  ( ph -> ( abs ` ( I - V ) ) e. RR ) | 
						
							| 123 | 118 | absge0d |  |-  ( ph -> 0 <_ ( abs ` ( H - U ) ) ) | 
						
							| 124 | 2 100 | resubcld |  |-  ( ph -> ( U - Y ) e. RR ) | 
						
							| 125 | 7 | elioored |  |-  ( ph -> P e. RR ) | 
						
							| 126 | 124 | rexrd |  |-  ( ph -> ( U - Y ) e. RR* ) | 
						
							| 127 | 2 | rexrd |  |-  ( ph -> U e. RR* ) | 
						
							| 128 |  | ioogtlb |  |-  ( ( ( U - Y ) e. RR* /\ U e. RR* /\ P e. ( ( U - Y ) (,) U ) ) -> ( U - Y ) < P ) | 
						
							| 129 | 126 127 7 128 | syl3anc |  |-  ( ph -> ( U - Y ) < P ) | 
						
							| 130 | 125 | rexrd |  |-  ( ph -> P e. RR* ) | 
						
							| 131 | 8 | elioored |  |-  ( ph -> R e. RR ) | 
						
							| 132 | 131 | rexrd |  |-  ( ph -> R e. RR* ) | 
						
							| 133 |  | ioogtlb |  |-  ( ( P e. RR* /\ R e. RR* /\ H e. ( P (,) R ) ) -> P < H ) | 
						
							| 134 | 130 132 11 133 | syl3anc |  |-  ( ph -> P < H ) | 
						
							| 135 | 124 125 13 129 134 | lttrd |  |-  ( ph -> ( U - Y ) < H ) | 
						
							| 136 | 2 100 | readdcld |  |-  ( ph -> ( U + Y ) e. RR ) | 
						
							| 137 |  | iooltub |  |-  ( ( P e. RR* /\ R e. RR* /\ H e. ( P (,) R ) ) -> H < R ) | 
						
							| 138 | 130 132 11 137 | syl3anc |  |-  ( ph -> H < R ) | 
						
							| 139 | 136 | rexrd |  |-  ( ph -> ( U + Y ) e. RR* ) | 
						
							| 140 |  | iooltub |  |-  ( ( U e. RR* /\ ( U + Y ) e. RR* /\ R e. ( U (,) ( U + Y ) ) ) -> R < ( U + Y ) ) | 
						
							| 141 | 127 139 8 140 | syl3anc |  |-  ( ph -> R < ( U + Y ) ) | 
						
							| 142 | 13 131 136 138 141 | lttrd |  |-  ( ph -> H < ( U + Y ) ) | 
						
							| 143 | 135 142 | jca |  |-  ( ph -> ( ( U - Y ) < H /\ H < ( U + Y ) ) ) | 
						
							| 144 | 13 2 100 | absdifltd |  |-  ( ph -> ( ( abs ` ( H - U ) ) < Y <-> ( ( U - Y ) < H /\ H < ( U + Y ) ) ) ) | 
						
							| 145 | 143 144 | mpbird |  |-  ( ph -> ( abs ` ( H - U ) ) < Y ) | 
						
							| 146 | 119 | absge0d |  |-  ( ph -> 0 <_ ( abs ` ( I - V ) ) ) | 
						
							| 147 | 3 100 | resubcld |  |-  ( ph -> ( V - Y ) e. RR ) | 
						
							| 148 | 9 | elioored |  |-  ( ph -> S e. RR ) | 
						
							| 149 | 147 | rexrd |  |-  ( ph -> ( V - Y ) e. RR* ) | 
						
							| 150 | 3 | rexrd |  |-  ( ph -> V e. RR* ) | 
						
							| 151 | 149 150 9 | ioogtlbd |  |-  ( ph -> ( V - Y ) < S ) | 
						
							| 152 | 148 | rexrd |  |-  ( ph -> S e. RR* ) | 
						
							| 153 | 10 | elioored |  |-  ( ph -> Z e. RR ) | 
						
							| 154 | 153 | rexrd |  |-  ( ph -> Z e. RR* ) | 
						
							| 155 | 152 154 12 | ioogtlbd |  |-  ( ph -> S < I ) | 
						
							| 156 | 147 148 16 151 155 | lttrd |  |-  ( ph -> ( V - Y ) < I ) | 
						
							| 157 | 3 100 | readdcld |  |-  ( ph -> ( V + Y ) e. RR ) | 
						
							| 158 | 152 154 12 | iooltubd |  |-  ( ph -> I < Z ) | 
						
							| 159 | 157 | rexrd |  |-  ( ph -> ( V + Y ) e. RR* ) | 
						
							| 160 | 150 159 10 | iooltubd |  |-  ( ph -> Z < ( V + Y ) ) | 
						
							| 161 | 16 153 157 158 160 | lttrd |  |-  ( ph -> I < ( V + Y ) ) | 
						
							| 162 | 156 161 | jca |  |-  ( ph -> ( ( V - Y ) < I /\ I < ( V + Y ) ) ) | 
						
							| 163 | 16 3 100 | absdifltd |  |-  ( ph -> ( ( abs ` ( I - V ) ) < Y <-> ( ( V - Y ) < I /\ I < ( V + Y ) ) ) ) | 
						
							| 164 | 162 163 | mpbird |  |-  ( ph -> ( abs ` ( I - V ) ) < Y ) | 
						
							| 165 | 121 100 122 100 123 145 146 164 | ltmul12ad |  |-  ( ph -> ( ( abs ` ( H - U ) ) x. ( abs ` ( I - V ) ) ) < ( Y x. Y ) ) | 
						
							| 166 | 120 165 | eqbrtrd |  |-  ( ph -> ( abs ` ( ( H - U ) x. ( I - V ) ) ) < ( Y x. Y ) ) | 
						
							| 167 | 58 115 116 117 166 | lelttrd |  |-  ( ph -> ( ( H - U ) x. ( I - V ) ) < ( Y x. Y ) ) | 
						
							| 168 | 100 | recnd |  |-  ( ph -> Y e. CC ) | 
						
							| 169 | 168 | sqvald |  |-  ( ph -> ( Y ^ 2 ) = ( Y x. Y ) ) | 
						
							| 170 | 169 | eqcomd |  |-  ( ph -> ( Y x. Y ) = ( Y ^ 2 ) ) | 
						
							| 171 | 167 170 | breqtrd |  |-  ( ph -> ( ( H - U ) x. ( I - V ) ) < ( Y ^ 2 ) ) | 
						
							| 172 | 61 | recnd |  |-  ( ph -> ( ( H - U ) x. V ) e. CC ) | 
						
							| 173 | 172 | abscld |  |-  ( ph -> ( abs ` ( ( H - U ) x. V ) ) e. RR ) | 
						
							| 174 | 61 | leabsd |  |-  ( ph -> ( ( H - U ) x. V ) <_ ( abs ` ( ( H - U ) x. V ) ) ) | 
						
							| 175 | 118 18 | absmuld |  |-  ( ph -> ( abs ` ( ( H - U ) x. V ) ) = ( ( abs ` ( H - U ) ) x. ( abs ` V ) ) ) | 
						
							| 176 | 121 100 145 | ltled |  |-  ( ph -> ( abs ` ( H - U ) ) <_ Y ) | 
						
							| 177 | 121 100 81 88 176 | lemul1ad |  |-  ( ph -> ( ( abs ` ( H - U ) ) x. ( abs ` V ) ) <_ ( Y x. ( abs ` V ) ) ) | 
						
							| 178 | 175 177 | eqbrtrd |  |-  ( ph -> ( abs ` ( ( H - U ) x. V ) ) <_ ( Y x. ( abs ` V ) ) ) | 
						
							| 179 | 61 173 103 174 178 | letrd |  |-  ( ph -> ( ( H - U ) x. V ) <_ ( Y x. ( abs ` V ) ) ) | 
						
							| 180 | 64 | recnd |  |-  ( ph -> ( U x. ( I - V ) ) e. CC ) | 
						
							| 181 | 180 | abscld |  |-  ( ph -> ( abs ` ( U x. ( I - V ) ) ) e. RR ) | 
						
							| 182 | 64 | leabsd |  |-  ( ph -> ( U x. ( I - V ) ) <_ ( abs ` ( U x. ( I - V ) ) ) ) | 
						
							| 183 | 15 119 | absmuld |  |-  ( ph -> ( abs ` ( U x. ( I - V ) ) ) = ( ( abs ` U ) x. ( abs ` ( I - V ) ) ) ) | 
						
							| 184 | 80 | recnd |  |-  ( ph -> ( abs ` U ) e. CC ) | 
						
							| 185 | 122 | recnd |  |-  ( ph -> ( abs ` ( I - V ) ) e. CC ) | 
						
							| 186 | 184 185 | mulcomd |  |-  ( ph -> ( ( abs ` U ) x. ( abs ` ( I - V ) ) ) = ( ( abs ` ( I - V ) ) x. ( abs ` U ) ) ) | 
						
							| 187 | 183 186 | eqtrd |  |-  ( ph -> ( abs ` ( U x. ( I - V ) ) ) = ( ( abs ` ( I - V ) ) x. ( abs ` U ) ) ) | 
						
							| 188 | 122 100 164 | ltled |  |-  ( ph -> ( abs ` ( I - V ) ) <_ Y ) | 
						
							| 189 | 122 100 80 87 188 | lemul1ad |  |-  ( ph -> ( ( abs ` ( I - V ) ) x. ( abs ` U ) ) <_ ( Y x. ( abs ` U ) ) ) | 
						
							| 190 | 187 189 | eqbrtrd |  |-  ( ph -> ( abs ` ( U x. ( I - V ) ) ) <_ ( Y x. ( abs ` U ) ) ) | 
						
							| 191 | 64 181 104 182 190 | letrd |  |-  ( ph -> ( U x. ( I - V ) ) <_ ( Y x. ( abs ` U ) ) ) | 
						
							| 192 | 61 64 103 104 179 191 | leadd12dd |  |-  ( ph -> ( ( ( H - U ) x. V ) + ( U x. ( I - V ) ) ) <_ ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) ) | 
						
							| 193 | 58 67 112 113 171 192 | ltleaddd |  |-  ( ph -> ( ( ( H - U ) x. ( I - V ) ) + ( ( ( H - U ) x. V ) + ( U x. ( I - V ) ) ) ) < ( ( Y ^ 2 ) + ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) ) ) | 
						
							| 194 | 100 107 | readdcld |  |-  ( ph -> ( Y + ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) ) e. RR ) | 
						
							| 195 | 85 121 100 123 176 | letrd |  |-  ( ph -> 0 <_ Y ) | 
						
							| 196 | 97 | rpred |  |-  ( ph -> X e. RR ) | 
						
							| 197 |  | min1 |  |-  ( ( 1 e. RR /\ X e. RR ) -> if ( 1 <_ X , 1 , X ) <_ 1 ) | 
						
							| 198 | 79 196 197 | syl2anc |  |-  ( ph -> if ( 1 <_ X , 1 , X ) <_ 1 ) | 
						
							| 199 | 6 198 | eqbrtrid |  |-  ( ph -> Y <_ 1 ) | 
						
							| 200 | 85 79 100 195 199 | eliccd |  |-  ( ph -> Y e. ( 0 [,] 1 ) ) | 
						
							| 201 | 100 | sqrlearg |  |-  ( ph -> ( ( Y ^ 2 ) <_ Y <-> Y e. ( 0 [,] 1 ) ) ) | 
						
							| 202 | 200 201 | mpbird |  |-  ( ph -> ( Y ^ 2 ) <_ Y ) | 
						
							| 203 | 102 100 107 202 | leadd1dd |  |-  ( ph -> ( ( Y ^ 2 ) + ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) ) <_ ( Y + ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) ) ) | 
						
							| 204 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 205 | 81 | recnd |  |-  ( ph -> ( abs ` V ) e. CC ) | 
						
							| 206 | 205 184 | addcld |  |-  ( ph -> ( ( abs ` V ) + ( abs ` U ) ) e. CC ) | 
						
							| 207 | 168 204 206 | adddid |  |-  ( ph -> ( Y x. ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) = ( ( Y x. 1 ) + ( Y x. ( ( abs ` V ) + ( abs ` U ) ) ) ) ) | 
						
							| 208 | 168 | mulridd |  |-  ( ph -> ( Y x. 1 ) = Y ) | 
						
							| 209 | 168 205 184 | adddid |  |-  ( ph -> ( Y x. ( ( abs ` V ) + ( abs ` U ) ) ) = ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) ) | 
						
							| 210 | 208 209 | oveq12d |  |-  ( ph -> ( ( Y x. 1 ) + ( Y x. ( ( abs ` V ) + ( abs ` U ) ) ) ) = ( Y + ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) ) ) | 
						
							| 211 | 207 210 | eqtr2d |  |-  ( ph -> ( Y + ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) ) = ( Y x. ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) ) | 
						
							| 212 | 81 80 | readdcld |  |-  ( ph -> ( ( abs ` V ) + ( abs ` U ) ) e. RR ) | 
						
							| 213 | 79 212 | readdcld |  |-  ( ph -> ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) e. RR ) | 
						
							| 214 | 81 80 | addge01d |  |-  ( ph -> ( 0 <_ ( abs ` U ) <-> ( abs ` V ) <_ ( ( abs ` V ) + ( abs ` U ) ) ) ) | 
						
							| 215 | 87 214 | mpbid |  |-  ( ph -> ( abs ` V ) <_ ( ( abs ` V ) + ( abs ` U ) ) ) | 
						
							| 216 | 85 81 212 88 215 | letrd |  |-  ( ph -> 0 <_ ( ( abs ` V ) + ( abs ` U ) ) ) | 
						
							| 217 | 79 212 | addge01d |  |-  ( ph -> ( 0 <_ ( ( abs ` V ) + ( abs ` U ) ) <-> 1 <_ ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) ) | 
						
							| 218 | 216 217 | mpbid |  |-  ( ph -> 1 <_ ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) | 
						
							| 219 | 85 79 213 86 218 | ltletrd |  |-  ( ph -> 0 < ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) | 
						
							| 220 | 85 213 219 | ltled |  |-  ( ph -> 0 <_ ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) | 
						
							| 221 |  | min2 |  |-  ( ( 1 e. RR /\ X e. RR ) -> if ( 1 <_ X , 1 , X ) <_ X ) | 
						
							| 222 | 79 196 221 | syl2anc |  |-  ( ph -> if ( 1 <_ X , 1 , X ) <_ X ) | 
						
							| 223 | 71 222 | eqbrtrd |  |-  ( ph -> Y <_ X ) | 
						
							| 224 | 100 196 213 220 223 | lemul1ad |  |-  ( ph -> ( Y x. ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) <_ ( X x. ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) ) | 
						
							| 225 | 74 | oveq1d |  |-  ( ph -> ( X x. ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) = ( ( ( A - ( U x. V ) ) / ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) x. ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) ) | 
						
							| 226 | 184 205 | addcomd |  |-  ( ph -> ( ( abs ` U ) + ( abs ` V ) ) = ( ( abs ` V ) + ( abs ` U ) ) ) | 
						
							| 227 | 226 | oveq2d |  |-  ( ph -> ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) = ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) | 
						
							| 228 | 227 | oveq2d |  |-  ( ph -> ( ( A - ( U x. V ) ) / ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) = ( ( A - ( U x. V ) ) / ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) ) | 
						
							| 229 | 228 | oveq1d |  |-  ( ph -> ( ( ( A - ( U x. V ) ) / ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) x. ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) = ( ( ( A - ( U x. V ) ) / ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) x. ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) ) | 
						
							| 230 | 111 | recnd |  |-  ( ph -> ( A - ( U x. V ) ) e. CC ) | 
						
							| 231 | 204 206 | addcld |  |-  ( ph -> ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) e. CC ) | 
						
							| 232 | 85 219 | gtned |  |-  ( ph -> ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) =/= 0 ) | 
						
							| 233 | 230 231 232 | divcan1d |  |-  ( ph -> ( ( ( A - ( U x. V ) ) / ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) x. ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) = ( A - ( U x. V ) ) ) | 
						
							| 234 | 225 229 233 | 3eqtrd |  |-  ( ph -> ( X x. ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) = ( A - ( U x. V ) ) ) | 
						
							| 235 | 224 234 | breqtrd |  |-  ( ph -> ( Y x. ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) <_ ( A - ( U x. V ) ) ) | 
						
							| 236 | 211 235 | eqbrtrd |  |-  ( ph -> ( Y + ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) ) <_ ( A - ( U x. V ) ) ) | 
						
							| 237 | 110 194 111 203 236 | letrd |  |-  ( ph -> ( ( Y ^ 2 ) + ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) ) <_ ( A - ( U x. V ) ) ) | 
						
							| 238 | 70 110 111 193 237 | ltletrd |  |-  ( ph -> ( ( ( H - U ) x. ( I - V ) ) + ( ( ( H - U ) x. V ) + ( U x. ( I - V ) ) ) ) < ( A - ( U x. V ) ) ) | 
						
							| 239 | 49 238 | eqbrtrd |  |-  ( ph -> ( ( H x. I ) - ( U x. V ) ) < ( A - ( U x. V ) ) ) | 
						
							| 240 | 13 16 | remulcld |  |-  ( ph -> ( H x. I ) e. RR ) | 
						
							| 241 | 240 1 75 | ltsub1d |  |-  ( ph -> ( ( H x. I ) < A <-> ( ( H x. I ) - ( U x. V ) ) < ( A - ( U x. V ) ) ) ) | 
						
							| 242 | 239 241 | mpbird |  |-  ( ph -> ( H x. I ) < A ) |