| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfmullem1.a |
|- ( ph -> A e. RR ) |
| 2 |
|
smfmullem1.u |
|- ( ph -> U e. RR ) |
| 3 |
|
smfmullem1.v |
|- ( ph -> V e. RR ) |
| 4 |
|
smfmullem1.l |
|- ( ph -> ( U x. V ) < A ) |
| 5 |
|
smfmullem1.x |
|- X = ( ( A - ( U x. V ) ) / ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) |
| 6 |
|
smfmullem1.y |
|- Y = if ( 1 <_ X , 1 , X ) |
| 7 |
|
smfmullem1.p |
|- ( ph -> P e. ( ( U - Y ) (,) U ) ) |
| 8 |
|
smfmullem1.r |
|- ( ph -> R e. ( U (,) ( U + Y ) ) ) |
| 9 |
|
smfmullem1.s |
|- ( ph -> S e. ( ( V - Y ) (,) V ) ) |
| 10 |
|
smfmullem1.z |
|- ( ph -> Z e. ( V (,) ( V + Y ) ) ) |
| 11 |
|
smfmullem1.h |
|- ( ph -> H e. ( P (,) R ) ) |
| 12 |
|
smfmullem1.i |
|- ( ph -> I e. ( S (,) Z ) ) |
| 13 |
11
|
elioored |
|- ( ph -> H e. RR ) |
| 14 |
13
|
recnd |
|- ( ph -> H e. CC ) |
| 15 |
2
|
recnd |
|- ( ph -> U e. CC ) |
| 16 |
12
|
elioored |
|- ( ph -> I e. RR ) |
| 17 |
16
|
recnd |
|- ( ph -> I e. CC ) |
| 18 |
3
|
recnd |
|- ( ph -> V e. CC ) |
| 19 |
14 15 17 18
|
mulsubd |
|- ( ph -> ( ( H - U ) x. ( I - V ) ) = ( ( ( H x. I ) + ( V x. U ) ) - ( ( H x. V ) + ( I x. U ) ) ) ) |
| 20 |
14 15 18
|
subdird |
|- ( ph -> ( ( H - U ) x. V ) = ( ( H x. V ) - ( U x. V ) ) ) |
| 21 |
15 17 18
|
subdid |
|- ( ph -> ( U x. ( I - V ) ) = ( ( U x. I ) - ( U x. V ) ) ) |
| 22 |
20 21
|
oveq12d |
|- ( ph -> ( ( ( H - U ) x. V ) + ( U x. ( I - V ) ) ) = ( ( ( H x. V ) - ( U x. V ) ) + ( ( U x. I ) - ( U x. V ) ) ) ) |
| 23 |
14 18
|
mulcld |
|- ( ph -> ( H x. V ) e. CC ) |
| 24 |
15 17
|
mulcld |
|- ( ph -> ( U x. I ) e. CC ) |
| 25 |
15 18
|
mulcld |
|- ( ph -> ( U x. V ) e. CC ) |
| 26 |
23 24 25 25
|
addsub4d |
|- ( ph -> ( ( ( H x. V ) + ( U x. I ) ) - ( ( U x. V ) + ( U x. V ) ) ) = ( ( ( H x. V ) - ( U x. V ) ) + ( ( U x. I ) - ( U x. V ) ) ) ) |
| 27 |
26
|
eqcomd |
|- ( ph -> ( ( ( H x. V ) - ( U x. V ) ) + ( ( U x. I ) - ( U x. V ) ) ) = ( ( ( H x. V ) + ( U x. I ) ) - ( ( U x. V ) + ( U x. V ) ) ) ) |
| 28 |
15 17
|
mulcomd |
|- ( ph -> ( U x. I ) = ( I x. U ) ) |
| 29 |
28
|
oveq2d |
|- ( ph -> ( ( H x. V ) + ( U x. I ) ) = ( ( H x. V ) + ( I x. U ) ) ) |
| 30 |
29
|
oveq1d |
|- ( ph -> ( ( ( H x. V ) + ( U x. I ) ) - ( ( U x. V ) + ( U x. V ) ) ) = ( ( ( H x. V ) + ( I x. U ) ) - ( ( U x. V ) + ( U x. V ) ) ) ) |
| 31 |
22 27 30
|
3eqtrd |
|- ( ph -> ( ( ( H - U ) x. V ) + ( U x. ( I - V ) ) ) = ( ( ( H x. V ) + ( I x. U ) ) - ( ( U x. V ) + ( U x. V ) ) ) ) |
| 32 |
19 31
|
oveq12d |
|- ( ph -> ( ( ( H - U ) x. ( I - V ) ) + ( ( ( H - U ) x. V ) + ( U x. ( I - V ) ) ) ) = ( ( ( ( H x. I ) + ( V x. U ) ) - ( ( H x. V ) + ( I x. U ) ) ) + ( ( ( H x. V ) + ( I x. U ) ) - ( ( U x. V ) + ( U x. V ) ) ) ) ) |
| 33 |
14 17
|
mulcld |
|- ( ph -> ( H x. I ) e. CC ) |
| 34 |
18 15
|
mulcld |
|- ( ph -> ( V x. U ) e. CC ) |
| 35 |
33 34
|
addcld |
|- ( ph -> ( ( H x. I ) + ( V x. U ) ) e. CC ) |
| 36 |
17 15
|
mulcld |
|- ( ph -> ( I x. U ) e. CC ) |
| 37 |
23 36
|
addcld |
|- ( ph -> ( ( H x. V ) + ( I x. U ) ) e. CC ) |
| 38 |
35 37
|
npcand |
|- ( ph -> ( ( ( ( H x. I ) + ( V x. U ) ) - ( ( H x. V ) + ( I x. U ) ) ) + ( ( H x. V ) + ( I x. U ) ) ) = ( ( H x. I ) + ( V x. U ) ) ) |
| 39 |
18 15
|
mulcomd |
|- ( ph -> ( V x. U ) = ( U x. V ) ) |
| 40 |
39
|
oveq2d |
|- ( ph -> ( ( H x. I ) + ( V x. U ) ) = ( ( H x. I ) + ( U x. V ) ) ) |
| 41 |
38 40
|
eqtrd |
|- ( ph -> ( ( ( ( H x. I ) + ( V x. U ) ) - ( ( H x. V ) + ( I x. U ) ) ) + ( ( H x. V ) + ( I x. U ) ) ) = ( ( H x. I ) + ( U x. V ) ) ) |
| 42 |
41
|
eqcomd |
|- ( ph -> ( ( H x. I ) + ( U x. V ) ) = ( ( ( ( H x. I ) + ( V x. U ) ) - ( ( H x. V ) + ( I x. U ) ) ) + ( ( H x. V ) + ( I x. U ) ) ) ) |
| 43 |
42
|
oveq1d |
|- ( ph -> ( ( ( H x. I ) + ( U x. V ) ) - ( ( U x. V ) + ( U x. V ) ) ) = ( ( ( ( ( H x. I ) + ( V x. U ) ) - ( ( H x. V ) + ( I x. U ) ) ) + ( ( H x. V ) + ( I x. U ) ) ) - ( ( U x. V ) + ( U x. V ) ) ) ) |
| 44 |
35 37
|
subcld |
|- ( ph -> ( ( ( H x. I ) + ( V x. U ) ) - ( ( H x. V ) + ( I x. U ) ) ) e. CC ) |
| 45 |
25 25
|
addcld |
|- ( ph -> ( ( U x. V ) + ( U x. V ) ) e. CC ) |
| 46 |
44 37 45
|
addsubassd |
|- ( ph -> ( ( ( ( ( H x. I ) + ( V x. U ) ) - ( ( H x. V ) + ( I x. U ) ) ) + ( ( H x. V ) + ( I x. U ) ) ) - ( ( U x. V ) + ( U x. V ) ) ) = ( ( ( ( H x. I ) + ( V x. U ) ) - ( ( H x. V ) + ( I x. U ) ) ) + ( ( ( H x. V ) + ( I x. U ) ) - ( ( U x. V ) + ( U x. V ) ) ) ) ) |
| 47 |
43 46
|
eqtr2d |
|- ( ph -> ( ( ( ( H x. I ) + ( V x. U ) ) - ( ( H x. V ) + ( I x. U ) ) ) + ( ( ( H x. V ) + ( I x. U ) ) - ( ( U x. V ) + ( U x. V ) ) ) ) = ( ( ( H x. I ) + ( U x. V ) ) - ( ( U x. V ) + ( U x. V ) ) ) ) |
| 48 |
33 25 25
|
pnpcan2d |
|- ( ph -> ( ( ( H x. I ) + ( U x. V ) ) - ( ( U x. V ) + ( U x. V ) ) ) = ( ( H x. I ) - ( U x. V ) ) ) |
| 49 |
32 47 48
|
3eqtrrd |
|- ( ph -> ( ( H x. I ) - ( U x. V ) ) = ( ( ( H - U ) x. ( I - V ) ) + ( ( ( H - U ) x. V ) + ( U x. ( I - V ) ) ) ) ) |
| 50 |
13 2
|
jca |
|- ( ph -> ( H e. RR /\ U e. RR ) ) |
| 51 |
|
resubcl |
|- ( ( H e. RR /\ U e. RR ) -> ( H - U ) e. RR ) |
| 52 |
50 51
|
syl |
|- ( ph -> ( H - U ) e. RR ) |
| 53 |
16 3
|
jca |
|- ( ph -> ( I e. RR /\ V e. RR ) ) |
| 54 |
|
resubcl |
|- ( ( I e. RR /\ V e. RR ) -> ( I - V ) e. RR ) |
| 55 |
53 54
|
syl |
|- ( ph -> ( I - V ) e. RR ) |
| 56 |
52 55
|
jca |
|- ( ph -> ( ( H - U ) e. RR /\ ( I - V ) e. RR ) ) |
| 57 |
|
remulcl |
|- ( ( ( H - U ) e. RR /\ ( I - V ) e. RR ) -> ( ( H - U ) x. ( I - V ) ) e. RR ) |
| 58 |
56 57
|
syl |
|- ( ph -> ( ( H - U ) x. ( I - V ) ) e. RR ) |
| 59 |
52 3
|
jca |
|- ( ph -> ( ( H - U ) e. RR /\ V e. RR ) ) |
| 60 |
|
remulcl |
|- ( ( ( H - U ) e. RR /\ V e. RR ) -> ( ( H - U ) x. V ) e. RR ) |
| 61 |
59 60
|
syl |
|- ( ph -> ( ( H - U ) x. V ) e. RR ) |
| 62 |
2 55
|
jca |
|- ( ph -> ( U e. RR /\ ( I - V ) e. RR ) ) |
| 63 |
|
remulcl |
|- ( ( U e. RR /\ ( I - V ) e. RR ) -> ( U x. ( I - V ) ) e. RR ) |
| 64 |
62 63
|
syl |
|- ( ph -> ( U x. ( I - V ) ) e. RR ) |
| 65 |
61 64
|
jca |
|- ( ph -> ( ( ( H - U ) x. V ) e. RR /\ ( U x. ( I - V ) ) e. RR ) ) |
| 66 |
|
readdcl |
|- ( ( ( ( H - U ) x. V ) e. RR /\ ( U x. ( I - V ) ) e. RR ) -> ( ( ( H - U ) x. V ) + ( U x. ( I - V ) ) ) e. RR ) |
| 67 |
65 66
|
syl |
|- ( ph -> ( ( ( H - U ) x. V ) + ( U x. ( I - V ) ) ) e. RR ) |
| 68 |
58 67
|
jca |
|- ( ph -> ( ( ( H - U ) x. ( I - V ) ) e. RR /\ ( ( ( H - U ) x. V ) + ( U x. ( I - V ) ) ) e. RR ) ) |
| 69 |
|
readdcl |
|- ( ( ( ( H - U ) x. ( I - V ) ) e. RR /\ ( ( ( H - U ) x. V ) + ( U x. ( I - V ) ) ) e. RR ) -> ( ( ( H - U ) x. ( I - V ) ) + ( ( ( H - U ) x. V ) + ( U x. ( I - V ) ) ) ) e. RR ) |
| 70 |
68 69
|
syl |
|- ( ph -> ( ( ( H - U ) x. ( I - V ) ) + ( ( ( H - U ) x. V ) + ( U x. ( I - V ) ) ) ) e. RR ) |
| 71 |
6
|
a1i |
|- ( ph -> Y = if ( 1 <_ X , 1 , X ) ) |
| 72 |
|
1rp |
|- 1 e. RR+ |
| 73 |
72
|
a1i |
|- ( ph -> 1 e. RR+ ) |
| 74 |
5
|
a1i |
|- ( ph -> X = ( ( A - ( U x. V ) ) / ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) ) |
| 75 |
2 3
|
remulcld |
|- ( ph -> ( U x. V ) e. RR ) |
| 76 |
|
difrp |
|- ( ( ( U x. V ) e. RR /\ A e. RR ) -> ( ( U x. V ) < A <-> ( A - ( U x. V ) ) e. RR+ ) ) |
| 77 |
75 1 76
|
syl2anc |
|- ( ph -> ( ( U x. V ) < A <-> ( A - ( U x. V ) ) e. RR+ ) ) |
| 78 |
4 77
|
mpbid |
|- ( ph -> ( A - ( U x. V ) ) e. RR+ ) |
| 79 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 80 |
15
|
abscld |
|- ( ph -> ( abs ` U ) e. RR ) |
| 81 |
18
|
abscld |
|- ( ph -> ( abs ` V ) e. RR ) |
| 82 |
80 81
|
readdcld |
|- ( ph -> ( ( abs ` U ) + ( abs ` V ) ) e. RR ) |
| 83 |
79 82
|
readdcld |
|- ( ph -> ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) e. RR ) |
| 84 |
|
0re |
|- 0 e. RR |
| 85 |
84
|
a1i |
|- ( ph -> 0 e. RR ) |
| 86 |
73
|
rpgt0d |
|- ( ph -> 0 < 1 ) |
| 87 |
15
|
absge0d |
|- ( ph -> 0 <_ ( abs ` U ) ) |
| 88 |
18
|
absge0d |
|- ( ph -> 0 <_ ( abs ` V ) ) |
| 89 |
80 81
|
addge01d |
|- ( ph -> ( 0 <_ ( abs ` V ) <-> ( abs ` U ) <_ ( ( abs ` U ) + ( abs ` V ) ) ) ) |
| 90 |
88 89
|
mpbid |
|- ( ph -> ( abs ` U ) <_ ( ( abs ` U ) + ( abs ` V ) ) ) |
| 91 |
85 80 82 87 90
|
letrd |
|- ( ph -> 0 <_ ( ( abs ` U ) + ( abs ` V ) ) ) |
| 92 |
79 82
|
addge01d |
|- ( ph -> ( 0 <_ ( ( abs ` U ) + ( abs ` V ) ) <-> 1 <_ ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) ) |
| 93 |
91 92
|
mpbid |
|- ( ph -> 1 <_ ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) |
| 94 |
85 79 83 86 93
|
ltletrd |
|- ( ph -> 0 < ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) |
| 95 |
83 94
|
elrpd |
|- ( ph -> ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) e. RR+ ) |
| 96 |
78 95
|
rpdivcld |
|- ( ph -> ( ( A - ( U x. V ) ) / ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) e. RR+ ) |
| 97 |
74 96
|
eqeltrd |
|- ( ph -> X e. RR+ ) |
| 98 |
73 97
|
ifcld |
|- ( ph -> if ( 1 <_ X , 1 , X ) e. RR+ ) |
| 99 |
71 98
|
eqeltrd |
|- ( ph -> Y e. RR+ ) |
| 100 |
99
|
rpred |
|- ( ph -> Y e. RR ) |
| 101 |
|
resqcl |
|- ( Y e. RR -> ( Y ^ 2 ) e. RR ) |
| 102 |
100 101
|
syl |
|- ( ph -> ( Y ^ 2 ) e. RR ) |
| 103 |
100 81
|
remulcld |
|- ( ph -> ( Y x. ( abs ` V ) ) e. RR ) |
| 104 |
100 80
|
remulcld |
|- ( ph -> ( Y x. ( abs ` U ) ) e. RR ) |
| 105 |
103 104
|
jca |
|- ( ph -> ( ( Y x. ( abs ` V ) ) e. RR /\ ( Y x. ( abs ` U ) ) e. RR ) ) |
| 106 |
|
readdcl |
|- ( ( ( Y x. ( abs ` V ) ) e. RR /\ ( Y x. ( abs ` U ) ) e. RR ) -> ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) e. RR ) |
| 107 |
105 106
|
syl |
|- ( ph -> ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) e. RR ) |
| 108 |
102 107
|
jca |
|- ( ph -> ( ( Y ^ 2 ) e. RR /\ ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) e. RR ) ) |
| 109 |
|
readdcl |
|- ( ( ( Y ^ 2 ) e. RR /\ ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) e. RR ) -> ( ( Y ^ 2 ) + ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) ) e. RR ) |
| 110 |
108 109
|
syl |
|- ( ph -> ( ( Y ^ 2 ) + ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) ) e. RR ) |
| 111 |
1 75
|
resubcld |
|- ( ph -> ( A - ( U x. V ) ) e. RR ) |
| 112 |
100
|
resqcld |
|- ( ph -> ( Y ^ 2 ) e. RR ) |
| 113 |
103 104
|
readdcld |
|- ( ph -> ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) e. RR ) |
| 114 |
19 44
|
eqeltrd |
|- ( ph -> ( ( H - U ) x. ( I - V ) ) e. CC ) |
| 115 |
114
|
abscld |
|- ( ph -> ( abs ` ( ( H - U ) x. ( I - V ) ) ) e. RR ) |
| 116 |
100 100
|
remulcld |
|- ( ph -> ( Y x. Y ) e. RR ) |
| 117 |
58
|
leabsd |
|- ( ph -> ( ( H - U ) x. ( I - V ) ) <_ ( abs ` ( ( H - U ) x. ( I - V ) ) ) ) |
| 118 |
52
|
recnd |
|- ( ph -> ( H - U ) e. CC ) |
| 119 |
55
|
recnd |
|- ( ph -> ( I - V ) e. CC ) |
| 120 |
118 119
|
absmuld |
|- ( ph -> ( abs ` ( ( H - U ) x. ( I - V ) ) ) = ( ( abs ` ( H - U ) ) x. ( abs ` ( I - V ) ) ) ) |
| 121 |
118
|
abscld |
|- ( ph -> ( abs ` ( H - U ) ) e. RR ) |
| 122 |
119
|
abscld |
|- ( ph -> ( abs ` ( I - V ) ) e. RR ) |
| 123 |
118
|
absge0d |
|- ( ph -> 0 <_ ( abs ` ( H - U ) ) ) |
| 124 |
2 100
|
resubcld |
|- ( ph -> ( U - Y ) e. RR ) |
| 125 |
7
|
elioored |
|- ( ph -> P e. RR ) |
| 126 |
124
|
rexrd |
|- ( ph -> ( U - Y ) e. RR* ) |
| 127 |
2
|
rexrd |
|- ( ph -> U e. RR* ) |
| 128 |
|
ioogtlb |
|- ( ( ( U - Y ) e. RR* /\ U e. RR* /\ P e. ( ( U - Y ) (,) U ) ) -> ( U - Y ) < P ) |
| 129 |
126 127 7 128
|
syl3anc |
|- ( ph -> ( U - Y ) < P ) |
| 130 |
125
|
rexrd |
|- ( ph -> P e. RR* ) |
| 131 |
8
|
elioored |
|- ( ph -> R e. RR ) |
| 132 |
131
|
rexrd |
|- ( ph -> R e. RR* ) |
| 133 |
|
ioogtlb |
|- ( ( P e. RR* /\ R e. RR* /\ H e. ( P (,) R ) ) -> P < H ) |
| 134 |
130 132 11 133
|
syl3anc |
|- ( ph -> P < H ) |
| 135 |
124 125 13 129 134
|
lttrd |
|- ( ph -> ( U - Y ) < H ) |
| 136 |
2 100
|
readdcld |
|- ( ph -> ( U + Y ) e. RR ) |
| 137 |
|
iooltub |
|- ( ( P e. RR* /\ R e. RR* /\ H e. ( P (,) R ) ) -> H < R ) |
| 138 |
130 132 11 137
|
syl3anc |
|- ( ph -> H < R ) |
| 139 |
136
|
rexrd |
|- ( ph -> ( U + Y ) e. RR* ) |
| 140 |
|
iooltub |
|- ( ( U e. RR* /\ ( U + Y ) e. RR* /\ R e. ( U (,) ( U + Y ) ) ) -> R < ( U + Y ) ) |
| 141 |
127 139 8 140
|
syl3anc |
|- ( ph -> R < ( U + Y ) ) |
| 142 |
13 131 136 138 141
|
lttrd |
|- ( ph -> H < ( U + Y ) ) |
| 143 |
135 142
|
jca |
|- ( ph -> ( ( U - Y ) < H /\ H < ( U + Y ) ) ) |
| 144 |
13 2 100
|
absdifltd |
|- ( ph -> ( ( abs ` ( H - U ) ) < Y <-> ( ( U - Y ) < H /\ H < ( U + Y ) ) ) ) |
| 145 |
143 144
|
mpbird |
|- ( ph -> ( abs ` ( H - U ) ) < Y ) |
| 146 |
119
|
absge0d |
|- ( ph -> 0 <_ ( abs ` ( I - V ) ) ) |
| 147 |
3 100
|
resubcld |
|- ( ph -> ( V - Y ) e. RR ) |
| 148 |
9
|
elioored |
|- ( ph -> S e. RR ) |
| 149 |
147
|
rexrd |
|- ( ph -> ( V - Y ) e. RR* ) |
| 150 |
3
|
rexrd |
|- ( ph -> V e. RR* ) |
| 151 |
149 150 9
|
ioogtlbd |
|- ( ph -> ( V - Y ) < S ) |
| 152 |
148
|
rexrd |
|- ( ph -> S e. RR* ) |
| 153 |
10
|
elioored |
|- ( ph -> Z e. RR ) |
| 154 |
153
|
rexrd |
|- ( ph -> Z e. RR* ) |
| 155 |
152 154 12
|
ioogtlbd |
|- ( ph -> S < I ) |
| 156 |
147 148 16 151 155
|
lttrd |
|- ( ph -> ( V - Y ) < I ) |
| 157 |
3 100
|
readdcld |
|- ( ph -> ( V + Y ) e. RR ) |
| 158 |
152 154 12
|
iooltubd |
|- ( ph -> I < Z ) |
| 159 |
157
|
rexrd |
|- ( ph -> ( V + Y ) e. RR* ) |
| 160 |
150 159 10
|
iooltubd |
|- ( ph -> Z < ( V + Y ) ) |
| 161 |
16 153 157 158 160
|
lttrd |
|- ( ph -> I < ( V + Y ) ) |
| 162 |
156 161
|
jca |
|- ( ph -> ( ( V - Y ) < I /\ I < ( V + Y ) ) ) |
| 163 |
16 3 100
|
absdifltd |
|- ( ph -> ( ( abs ` ( I - V ) ) < Y <-> ( ( V - Y ) < I /\ I < ( V + Y ) ) ) ) |
| 164 |
162 163
|
mpbird |
|- ( ph -> ( abs ` ( I - V ) ) < Y ) |
| 165 |
121 100 122 100 123 145 146 164
|
ltmul12ad |
|- ( ph -> ( ( abs ` ( H - U ) ) x. ( abs ` ( I - V ) ) ) < ( Y x. Y ) ) |
| 166 |
120 165
|
eqbrtrd |
|- ( ph -> ( abs ` ( ( H - U ) x. ( I - V ) ) ) < ( Y x. Y ) ) |
| 167 |
58 115 116 117 166
|
lelttrd |
|- ( ph -> ( ( H - U ) x. ( I - V ) ) < ( Y x. Y ) ) |
| 168 |
100
|
recnd |
|- ( ph -> Y e. CC ) |
| 169 |
168
|
sqvald |
|- ( ph -> ( Y ^ 2 ) = ( Y x. Y ) ) |
| 170 |
169
|
eqcomd |
|- ( ph -> ( Y x. Y ) = ( Y ^ 2 ) ) |
| 171 |
167 170
|
breqtrd |
|- ( ph -> ( ( H - U ) x. ( I - V ) ) < ( Y ^ 2 ) ) |
| 172 |
61
|
recnd |
|- ( ph -> ( ( H - U ) x. V ) e. CC ) |
| 173 |
172
|
abscld |
|- ( ph -> ( abs ` ( ( H - U ) x. V ) ) e. RR ) |
| 174 |
61
|
leabsd |
|- ( ph -> ( ( H - U ) x. V ) <_ ( abs ` ( ( H - U ) x. V ) ) ) |
| 175 |
118 18
|
absmuld |
|- ( ph -> ( abs ` ( ( H - U ) x. V ) ) = ( ( abs ` ( H - U ) ) x. ( abs ` V ) ) ) |
| 176 |
121 100 145
|
ltled |
|- ( ph -> ( abs ` ( H - U ) ) <_ Y ) |
| 177 |
121 100 81 88 176
|
lemul1ad |
|- ( ph -> ( ( abs ` ( H - U ) ) x. ( abs ` V ) ) <_ ( Y x. ( abs ` V ) ) ) |
| 178 |
175 177
|
eqbrtrd |
|- ( ph -> ( abs ` ( ( H - U ) x. V ) ) <_ ( Y x. ( abs ` V ) ) ) |
| 179 |
61 173 103 174 178
|
letrd |
|- ( ph -> ( ( H - U ) x. V ) <_ ( Y x. ( abs ` V ) ) ) |
| 180 |
64
|
recnd |
|- ( ph -> ( U x. ( I - V ) ) e. CC ) |
| 181 |
180
|
abscld |
|- ( ph -> ( abs ` ( U x. ( I - V ) ) ) e. RR ) |
| 182 |
64
|
leabsd |
|- ( ph -> ( U x. ( I - V ) ) <_ ( abs ` ( U x. ( I - V ) ) ) ) |
| 183 |
15 119
|
absmuld |
|- ( ph -> ( abs ` ( U x. ( I - V ) ) ) = ( ( abs ` U ) x. ( abs ` ( I - V ) ) ) ) |
| 184 |
80
|
recnd |
|- ( ph -> ( abs ` U ) e. CC ) |
| 185 |
122
|
recnd |
|- ( ph -> ( abs ` ( I - V ) ) e. CC ) |
| 186 |
184 185
|
mulcomd |
|- ( ph -> ( ( abs ` U ) x. ( abs ` ( I - V ) ) ) = ( ( abs ` ( I - V ) ) x. ( abs ` U ) ) ) |
| 187 |
183 186
|
eqtrd |
|- ( ph -> ( abs ` ( U x. ( I - V ) ) ) = ( ( abs ` ( I - V ) ) x. ( abs ` U ) ) ) |
| 188 |
122 100 164
|
ltled |
|- ( ph -> ( abs ` ( I - V ) ) <_ Y ) |
| 189 |
122 100 80 87 188
|
lemul1ad |
|- ( ph -> ( ( abs ` ( I - V ) ) x. ( abs ` U ) ) <_ ( Y x. ( abs ` U ) ) ) |
| 190 |
187 189
|
eqbrtrd |
|- ( ph -> ( abs ` ( U x. ( I - V ) ) ) <_ ( Y x. ( abs ` U ) ) ) |
| 191 |
64 181 104 182 190
|
letrd |
|- ( ph -> ( U x. ( I - V ) ) <_ ( Y x. ( abs ` U ) ) ) |
| 192 |
61 64 103 104 179 191
|
le2addd |
|- ( ph -> ( ( ( H - U ) x. V ) + ( U x. ( I - V ) ) ) <_ ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) ) |
| 193 |
58 67 112 113 171 192
|
ltleaddd |
|- ( ph -> ( ( ( H - U ) x. ( I - V ) ) + ( ( ( H - U ) x. V ) + ( U x. ( I - V ) ) ) ) < ( ( Y ^ 2 ) + ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) ) ) |
| 194 |
100 107
|
readdcld |
|- ( ph -> ( Y + ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) ) e. RR ) |
| 195 |
85 121 100 123 176
|
letrd |
|- ( ph -> 0 <_ Y ) |
| 196 |
97
|
rpred |
|- ( ph -> X e. RR ) |
| 197 |
|
min1 |
|- ( ( 1 e. RR /\ X e. RR ) -> if ( 1 <_ X , 1 , X ) <_ 1 ) |
| 198 |
79 196 197
|
syl2anc |
|- ( ph -> if ( 1 <_ X , 1 , X ) <_ 1 ) |
| 199 |
6 198
|
eqbrtrid |
|- ( ph -> Y <_ 1 ) |
| 200 |
85 79 100 195 199
|
eliccd |
|- ( ph -> Y e. ( 0 [,] 1 ) ) |
| 201 |
100
|
sqrlearg |
|- ( ph -> ( ( Y ^ 2 ) <_ Y <-> Y e. ( 0 [,] 1 ) ) ) |
| 202 |
200 201
|
mpbird |
|- ( ph -> ( Y ^ 2 ) <_ Y ) |
| 203 |
102 100 107 202
|
leadd1dd |
|- ( ph -> ( ( Y ^ 2 ) + ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) ) <_ ( Y + ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) ) ) |
| 204 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 205 |
81
|
recnd |
|- ( ph -> ( abs ` V ) e. CC ) |
| 206 |
205 184
|
addcld |
|- ( ph -> ( ( abs ` V ) + ( abs ` U ) ) e. CC ) |
| 207 |
168 204 206
|
adddid |
|- ( ph -> ( Y x. ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) = ( ( Y x. 1 ) + ( Y x. ( ( abs ` V ) + ( abs ` U ) ) ) ) ) |
| 208 |
168
|
mulridd |
|- ( ph -> ( Y x. 1 ) = Y ) |
| 209 |
168 205 184
|
adddid |
|- ( ph -> ( Y x. ( ( abs ` V ) + ( abs ` U ) ) ) = ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) ) |
| 210 |
208 209
|
oveq12d |
|- ( ph -> ( ( Y x. 1 ) + ( Y x. ( ( abs ` V ) + ( abs ` U ) ) ) ) = ( Y + ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) ) ) |
| 211 |
207 210
|
eqtr2d |
|- ( ph -> ( Y + ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) ) = ( Y x. ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) ) |
| 212 |
81 80
|
readdcld |
|- ( ph -> ( ( abs ` V ) + ( abs ` U ) ) e. RR ) |
| 213 |
79 212
|
readdcld |
|- ( ph -> ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) e. RR ) |
| 214 |
81 80
|
addge01d |
|- ( ph -> ( 0 <_ ( abs ` U ) <-> ( abs ` V ) <_ ( ( abs ` V ) + ( abs ` U ) ) ) ) |
| 215 |
87 214
|
mpbid |
|- ( ph -> ( abs ` V ) <_ ( ( abs ` V ) + ( abs ` U ) ) ) |
| 216 |
85 81 212 88 215
|
letrd |
|- ( ph -> 0 <_ ( ( abs ` V ) + ( abs ` U ) ) ) |
| 217 |
79 212
|
addge01d |
|- ( ph -> ( 0 <_ ( ( abs ` V ) + ( abs ` U ) ) <-> 1 <_ ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) ) |
| 218 |
216 217
|
mpbid |
|- ( ph -> 1 <_ ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) |
| 219 |
85 79 213 86 218
|
ltletrd |
|- ( ph -> 0 < ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) |
| 220 |
85 213 219
|
ltled |
|- ( ph -> 0 <_ ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) |
| 221 |
|
min2 |
|- ( ( 1 e. RR /\ X e. RR ) -> if ( 1 <_ X , 1 , X ) <_ X ) |
| 222 |
79 196 221
|
syl2anc |
|- ( ph -> if ( 1 <_ X , 1 , X ) <_ X ) |
| 223 |
71 222
|
eqbrtrd |
|- ( ph -> Y <_ X ) |
| 224 |
100 196 213 220 223
|
lemul1ad |
|- ( ph -> ( Y x. ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) <_ ( X x. ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) ) |
| 225 |
74
|
oveq1d |
|- ( ph -> ( X x. ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) = ( ( ( A - ( U x. V ) ) / ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) x. ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) ) |
| 226 |
184 205
|
addcomd |
|- ( ph -> ( ( abs ` U ) + ( abs ` V ) ) = ( ( abs ` V ) + ( abs ` U ) ) ) |
| 227 |
226
|
oveq2d |
|- ( ph -> ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) = ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) |
| 228 |
227
|
oveq2d |
|- ( ph -> ( ( A - ( U x. V ) ) / ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) = ( ( A - ( U x. V ) ) / ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) ) |
| 229 |
228
|
oveq1d |
|- ( ph -> ( ( ( A - ( U x. V ) ) / ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) x. ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) = ( ( ( A - ( U x. V ) ) / ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) x. ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) ) |
| 230 |
111
|
recnd |
|- ( ph -> ( A - ( U x. V ) ) e. CC ) |
| 231 |
204 206
|
addcld |
|- ( ph -> ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) e. CC ) |
| 232 |
85 219
|
gtned |
|- ( ph -> ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) =/= 0 ) |
| 233 |
230 231 232
|
divcan1d |
|- ( ph -> ( ( ( A - ( U x. V ) ) / ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) x. ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) = ( A - ( U x. V ) ) ) |
| 234 |
225 229 233
|
3eqtrd |
|- ( ph -> ( X x. ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) = ( A - ( U x. V ) ) ) |
| 235 |
224 234
|
breqtrd |
|- ( ph -> ( Y x. ( 1 + ( ( abs ` V ) + ( abs ` U ) ) ) ) <_ ( A - ( U x. V ) ) ) |
| 236 |
211 235
|
eqbrtrd |
|- ( ph -> ( Y + ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) ) <_ ( A - ( U x. V ) ) ) |
| 237 |
110 194 111 203 236
|
letrd |
|- ( ph -> ( ( Y ^ 2 ) + ( ( Y x. ( abs ` V ) ) + ( Y x. ( abs ` U ) ) ) ) <_ ( A - ( U x. V ) ) ) |
| 238 |
70 110 111 193 237
|
ltletrd |
|- ( ph -> ( ( ( H - U ) x. ( I - V ) ) + ( ( ( H - U ) x. V ) + ( U x. ( I - V ) ) ) ) < ( A - ( U x. V ) ) ) |
| 239 |
49 238
|
eqbrtrd |
|- ( ph -> ( ( H x. I ) - ( U x. V ) ) < ( A - ( U x. V ) ) ) |
| 240 |
13 16
|
remulcld |
|- ( ph -> ( H x. I ) e. RR ) |
| 241 |
240 1 75
|
ltsub1d |
|- ( ph -> ( ( H x. I ) < A <-> ( ( H x. I ) - ( U x. V ) ) < ( A - ( U x. V ) ) ) ) |
| 242 |
239 241
|
mpbird |
|- ( ph -> ( H x. I ) < A ) |