Description: An element of an open interval is less than its upper bound. (Contributed by Glauco Siliprandi, 26-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iooltubd.1 | |- ( ph -> A e. RR* ) |
|
| iooltubd.2 | |- ( ph -> B e. RR* ) |
||
| iooltubd.3 | |- ( ph -> C e. ( A (,) B ) ) |
||
| Assertion | iooltubd | |- ( ph -> C < B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooltubd.1 | |- ( ph -> A e. RR* ) |
|
| 2 | iooltubd.2 | |- ( ph -> B e. RR* ) |
|
| 3 | iooltubd.3 | |- ( ph -> C e. ( A (,) B ) ) |
|
| 4 | iooltub | |- ( ( A e. RR* /\ B e. RR* /\ C e. ( A (,) B ) ) -> C < B ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ph -> C < B ) |