Description: An element of an open interval is less than its upper bound. (Contributed by Glauco Siliprandi, 26-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iooltubd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| iooltubd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | ||
| iooltubd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) | ||
| Assertion | iooltubd | ⊢ ( 𝜑 → 𝐶 < 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooltubd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| 2 | iooltubd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | |
| 3 | iooltubd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| 4 | iooltub | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐶 < 𝐵 ) | |
| 5 | 1 2 3 4 | syl3anc | ⊢ ( 𝜑 → 𝐶 < 𝐵 ) |