| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfmullem2.a |
|- ( ph -> A e. RR ) |
| 2 |
|
smfmullem2.k |
|- K = { q e. ( QQ ^m ( 0 ... 3 ) ) | A. u e. ( ( q ` 0 ) (,) ( q ` 1 ) ) A. v e. ( ( q ` 2 ) (,) ( q ` 3 ) ) ( u x. v ) < A } |
| 3 |
|
smfmullem2.u |
|- ( ph -> U e. RR ) |
| 4 |
|
smfmullem2.v |
|- ( ph -> V e. RR ) |
| 5 |
|
smfmullem2.l |
|- ( ph -> ( U x. V ) < A ) |
| 6 |
|
smfmullem2.p |
|- ( ph -> P e. QQ ) |
| 7 |
|
smfmullem2.r |
|- ( ph -> R e. QQ ) |
| 8 |
|
smfmullem2.s |
|- ( ph -> S e. QQ ) |
| 9 |
|
smfmullem2.z |
|- ( ph -> Z e. QQ ) |
| 10 |
|
smfmullem2.p2 |
|- ( ph -> P e. ( ( U - Y ) (,) U ) ) |
| 11 |
|
smfmullem2.42 |
|- ( ph -> R e. ( U (,) ( U + Y ) ) ) |
| 12 |
|
smfmullem2.w2 |
|- ( ph -> S e. ( ( V - Y ) (,) V ) ) |
| 13 |
|
smfmullem2.z2 |
|- ( ph -> Z e. ( V (,) ( V + Y ) ) ) |
| 14 |
|
smfmullem2.x |
|- X = ( ( A - ( U x. V ) ) / ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) |
| 15 |
|
smfmullem2.y |
|- Y = if ( 1 <_ X , 1 , X ) |
| 16 |
6 7 8 9
|
s4cld |
|- ( ph -> <" P R S Z "> e. Word QQ ) |
| 17 |
|
s4len |
|- ( # ` <" P R S Z "> ) = 4 |
| 18 |
17
|
a1i |
|- ( ph -> ( # ` <" P R S Z "> ) = 4 ) |
| 19 |
16 18
|
jca |
|- ( ph -> ( <" P R S Z "> e. Word QQ /\ ( # ` <" P R S Z "> ) = 4 ) ) |
| 20 |
|
qex |
|- QQ e. _V |
| 21 |
20
|
a1i |
|- ( ph -> QQ e. _V ) |
| 22 |
|
4nn0 |
|- 4 e. NN0 |
| 23 |
22
|
a1i |
|- ( ph -> 4 e. NN0 ) |
| 24 |
|
wrdmap |
|- ( ( QQ e. _V /\ 4 e. NN0 ) -> ( ( <" P R S Z "> e. Word QQ /\ ( # ` <" P R S Z "> ) = 4 ) <-> <" P R S Z "> e. ( QQ ^m ( 0 ..^ 4 ) ) ) ) |
| 25 |
21 23 24
|
syl2anc |
|- ( ph -> ( ( <" P R S Z "> e. Word QQ /\ ( # ` <" P R S Z "> ) = 4 ) <-> <" P R S Z "> e. ( QQ ^m ( 0 ..^ 4 ) ) ) ) |
| 26 |
19 25
|
mpbid |
|- ( ph -> <" P R S Z "> e. ( QQ ^m ( 0 ..^ 4 ) ) ) |
| 27 |
|
3z |
|- 3 e. ZZ |
| 28 |
|
fzval3 |
|- ( 3 e. ZZ -> ( 0 ... 3 ) = ( 0 ..^ ( 3 + 1 ) ) ) |
| 29 |
27 28
|
ax-mp |
|- ( 0 ... 3 ) = ( 0 ..^ ( 3 + 1 ) ) |
| 30 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
| 31 |
30
|
oveq2i |
|- ( 0 ..^ ( 3 + 1 ) ) = ( 0 ..^ 4 ) |
| 32 |
29 31
|
eqtri |
|- ( 0 ... 3 ) = ( 0 ..^ 4 ) |
| 33 |
32
|
eqcomi |
|- ( 0 ..^ 4 ) = ( 0 ... 3 ) |
| 34 |
33
|
a1i |
|- ( ph -> ( 0 ..^ 4 ) = ( 0 ... 3 ) ) |
| 35 |
34
|
oveq2d |
|- ( ph -> ( QQ ^m ( 0 ..^ 4 ) ) = ( QQ ^m ( 0 ... 3 ) ) ) |
| 36 |
26 35
|
eleqtrd |
|- ( ph -> <" P R S Z "> e. ( QQ ^m ( 0 ... 3 ) ) ) |
| 37 |
|
simpr |
|- ( ( ph /\ u e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) ) -> u e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) ) |
| 38 |
|
s4fv0 |
|- ( P e. QQ -> ( <" P R S Z "> ` 0 ) = P ) |
| 39 |
6 38
|
syl |
|- ( ph -> ( <" P R S Z "> ` 0 ) = P ) |
| 40 |
|
s4fv1 |
|- ( R e. QQ -> ( <" P R S Z "> ` 1 ) = R ) |
| 41 |
7 40
|
syl |
|- ( ph -> ( <" P R S Z "> ` 1 ) = R ) |
| 42 |
39 41
|
oveq12d |
|- ( ph -> ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) = ( P (,) R ) ) |
| 43 |
42
|
adantr |
|- ( ( ph /\ u e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) ) -> ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) = ( P (,) R ) ) |
| 44 |
37 43
|
eleqtrd |
|- ( ( ph /\ u e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) ) -> u e. ( P (,) R ) ) |
| 45 |
|
simpr |
|- ( ( ph /\ v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) -> v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) |
| 46 |
|
s4fv2 |
|- ( S e. QQ -> ( <" P R S Z "> ` 2 ) = S ) |
| 47 |
8 46
|
syl |
|- ( ph -> ( <" P R S Z "> ` 2 ) = S ) |
| 48 |
|
s4fv3 |
|- ( Z e. QQ -> ( <" P R S Z "> ` 3 ) = Z ) |
| 49 |
9 48
|
syl |
|- ( ph -> ( <" P R S Z "> ` 3 ) = Z ) |
| 50 |
47 49
|
oveq12d |
|- ( ph -> ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) = ( S (,) Z ) ) |
| 51 |
50
|
adantr |
|- ( ( ph /\ v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) -> ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) = ( S (,) Z ) ) |
| 52 |
45 51
|
eleqtrd |
|- ( ( ph /\ v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) -> v e. ( S (,) Z ) ) |
| 53 |
|
simpr |
|- ( ( ph /\ v e. ( S (,) Z ) ) -> v e. ( S (,) Z ) ) |
| 54 |
52 53
|
syldan |
|- ( ( ph /\ v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) -> v e. ( S (,) Z ) ) |
| 55 |
54
|
adantlr |
|- ( ( ( ph /\ u e. ( P (,) R ) ) /\ v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) -> v e. ( S (,) Z ) ) |
| 56 |
1
|
ad2antrr |
|- ( ( ( ph /\ u e. ( P (,) R ) ) /\ v e. ( S (,) Z ) ) -> A e. RR ) |
| 57 |
3
|
ad2antrr |
|- ( ( ( ph /\ u e. ( P (,) R ) ) /\ v e. ( S (,) Z ) ) -> U e. RR ) |
| 58 |
4
|
ad2antrr |
|- ( ( ( ph /\ u e. ( P (,) R ) ) /\ v e. ( S (,) Z ) ) -> V e. RR ) |
| 59 |
5
|
ad2antrr |
|- ( ( ( ph /\ u e. ( P (,) R ) ) /\ v e. ( S (,) Z ) ) -> ( U x. V ) < A ) |
| 60 |
10
|
ad2antrr |
|- ( ( ( ph /\ u e. ( P (,) R ) ) /\ v e. ( S (,) Z ) ) -> P e. ( ( U - Y ) (,) U ) ) |
| 61 |
11
|
ad2antrr |
|- ( ( ( ph /\ u e. ( P (,) R ) ) /\ v e. ( S (,) Z ) ) -> R e. ( U (,) ( U + Y ) ) ) |
| 62 |
12
|
ad2antrr |
|- ( ( ( ph /\ u e. ( P (,) R ) ) /\ v e. ( S (,) Z ) ) -> S e. ( ( V - Y ) (,) V ) ) |
| 63 |
13
|
ad2antrr |
|- ( ( ( ph /\ u e. ( P (,) R ) ) /\ v e. ( S (,) Z ) ) -> Z e. ( V (,) ( V + Y ) ) ) |
| 64 |
|
simplr |
|- ( ( ( ph /\ u e. ( P (,) R ) ) /\ v e. ( S (,) Z ) ) -> u e. ( P (,) R ) ) |
| 65 |
|
simpr |
|- ( ( ( ph /\ u e. ( P (,) R ) ) /\ v e. ( S (,) Z ) ) -> v e. ( S (,) Z ) ) |
| 66 |
56 57 58 59 14 15 60 61 62 63 64 65
|
smfmullem1 |
|- ( ( ( ph /\ u e. ( P (,) R ) ) /\ v e. ( S (,) Z ) ) -> ( u x. v ) < A ) |
| 67 |
55 66
|
syldan |
|- ( ( ( ph /\ u e. ( P (,) R ) ) /\ v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) -> ( u x. v ) < A ) |
| 68 |
67
|
ralrimiva |
|- ( ( ph /\ u e. ( P (,) R ) ) -> A. v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ( u x. v ) < A ) |
| 69 |
44 68
|
syldan |
|- ( ( ph /\ u e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) ) -> A. v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ( u x. v ) < A ) |
| 70 |
69
|
ralrimiva |
|- ( ph -> A. u e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) A. v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ( u x. v ) < A ) |
| 71 |
36 70
|
jca |
|- ( ph -> ( <" P R S Z "> e. ( QQ ^m ( 0 ... 3 ) ) /\ A. u e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) A. v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ( u x. v ) < A ) ) |
| 72 |
|
fveq1 |
|- ( q = <" P R S Z "> -> ( q ` 0 ) = ( <" P R S Z "> ` 0 ) ) |
| 73 |
|
fveq1 |
|- ( q = <" P R S Z "> -> ( q ` 1 ) = ( <" P R S Z "> ` 1 ) ) |
| 74 |
72 73
|
oveq12d |
|- ( q = <" P R S Z "> -> ( ( q ` 0 ) (,) ( q ` 1 ) ) = ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) ) |
| 75 |
74
|
raleqdv |
|- ( q = <" P R S Z "> -> ( A. u e. ( ( q ` 0 ) (,) ( q ` 1 ) ) A. v e. ( ( q ` 2 ) (,) ( q ` 3 ) ) ( u x. v ) < A <-> A. u e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) A. v e. ( ( q ` 2 ) (,) ( q ` 3 ) ) ( u x. v ) < A ) ) |
| 76 |
|
fveq1 |
|- ( q = <" P R S Z "> -> ( q ` 2 ) = ( <" P R S Z "> ` 2 ) ) |
| 77 |
|
fveq1 |
|- ( q = <" P R S Z "> -> ( q ` 3 ) = ( <" P R S Z "> ` 3 ) ) |
| 78 |
76 77
|
oveq12d |
|- ( q = <" P R S Z "> -> ( ( q ` 2 ) (,) ( q ` 3 ) ) = ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) |
| 79 |
78
|
raleqdv |
|- ( q = <" P R S Z "> -> ( A. v e. ( ( q ` 2 ) (,) ( q ` 3 ) ) ( u x. v ) < A <-> A. v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ( u x. v ) < A ) ) |
| 80 |
79
|
ralbidv |
|- ( q = <" P R S Z "> -> ( A. u e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) A. v e. ( ( q ` 2 ) (,) ( q ` 3 ) ) ( u x. v ) < A <-> A. u e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) A. v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ( u x. v ) < A ) ) |
| 81 |
75 80
|
bitrd |
|- ( q = <" P R S Z "> -> ( A. u e. ( ( q ` 0 ) (,) ( q ` 1 ) ) A. v e. ( ( q ` 2 ) (,) ( q ` 3 ) ) ( u x. v ) < A <-> A. u e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) A. v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ( u x. v ) < A ) ) |
| 82 |
81 2
|
elrab2 |
|- ( <" P R S Z "> e. K <-> ( <" P R S Z "> e. ( QQ ^m ( 0 ... 3 ) ) /\ A. u e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) A. v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ( u x. v ) < A ) ) |
| 83 |
71 82
|
sylibr |
|- ( ph -> <" P R S Z "> e. K ) |
| 84 |
|
qssre |
|- QQ C_ RR |
| 85 |
84 6
|
sselid |
|- ( ph -> P e. RR ) |
| 86 |
85
|
rexrd |
|- ( ph -> P e. RR* ) |
| 87 |
84 7
|
sselid |
|- ( ph -> R e. RR ) |
| 88 |
87
|
rexrd |
|- ( ph -> R e. RR* ) |
| 89 |
15
|
a1i |
|- ( ph -> Y = if ( 1 <_ X , 1 , X ) ) |
| 90 |
|
1rp |
|- 1 e. RR+ |
| 91 |
90
|
a1i |
|- ( ph -> 1 e. RR+ ) |
| 92 |
14
|
a1i |
|- ( ph -> X = ( ( A - ( U x. V ) ) / ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) ) |
| 93 |
3 4
|
remulcld |
|- ( ph -> ( U x. V ) e. RR ) |
| 94 |
|
difrp |
|- ( ( ( U x. V ) e. RR /\ A e. RR ) -> ( ( U x. V ) < A <-> ( A - ( U x. V ) ) e. RR+ ) ) |
| 95 |
93 1 94
|
syl2anc |
|- ( ph -> ( ( U x. V ) < A <-> ( A - ( U x. V ) ) e. RR+ ) ) |
| 96 |
5 95
|
mpbid |
|- ( ph -> ( A - ( U x. V ) ) e. RR+ ) |
| 97 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 98 |
3
|
recnd |
|- ( ph -> U e. CC ) |
| 99 |
98
|
abscld |
|- ( ph -> ( abs ` U ) e. RR ) |
| 100 |
4
|
recnd |
|- ( ph -> V e. CC ) |
| 101 |
100
|
abscld |
|- ( ph -> ( abs ` V ) e. RR ) |
| 102 |
99 101
|
readdcld |
|- ( ph -> ( ( abs ` U ) + ( abs ` V ) ) e. RR ) |
| 103 |
97 102
|
readdcld |
|- ( ph -> ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) e. RR ) |
| 104 |
|
0re |
|- 0 e. RR |
| 105 |
104
|
a1i |
|- ( ph -> 0 e. RR ) |
| 106 |
91
|
rpgt0d |
|- ( ph -> 0 < 1 ) |
| 107 |
98
|
absge0d |
|- ( ph -> 0 <_ ( abs ` U ) ) |
| 108 |
100
|
absge0d |
|- ( ph -> 0 <_ ( abs ` V ) ) |
| 109 |
99 101
|
addge01d |
|- ( ph -> ( 0 <_ ( abs ` V ) <-> ( abs ` U ) <_ ( ( abs ` U ) + ( abs ` V ) ) ) ) |
| 110 |
108 109
|
mpbid |
|- ( ph -> ( abs ` U ) <_ ( ( abs ` U ) + ( abs ` V ) ) ) |
| 111 |
105 99 102 107 110
|
letrd |
|- ( ph -> 0 <_ ( ( abs ` U ) + ( abs ` V ) ) ) |
| 112 |
97 102
|
addge01d |
|- ( ph -> ( 0 <_ ( ( abs ` U ) + ( abs ` V ) ) <-> 1 <_ ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) ) |
| 113 |
111 112
|
mpbid |
|- ( ph -> 1 <_ ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) |
| 114 |
105 97 103 106 113
|
ltletrd |
|- ( ph -> 0 < ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) |
| 115 |
103 114
|
elrpd |
|- ( ph -> ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) e. RR+ ) |
| 116 |
96 115
|
rpdivcld |
|- ( ph -> ( ( A - ( U x. V ) ) / ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) e. RR+ ) |
| 117 |
92 116
|
eqeltrd |
|- ( ph -> X e. RR+ ) |
| 118 |
91 117
|
ifcld |
|- ( ph -> if ( 1 <_ X , 1 , X ) e. RR+ ) |
| 119 |
89 118
|
eqeltrd |
|- ( ph -> Y e. RR+ ) |
| 120 |
119
|
rpred |
|- ( ph -> Y e. RR ) |
| 121 |
3 120
|
resubcld |
|- ( ph -> ( U - Y ) e. RR ) |
| 122 |
121
|
rexrd |
|- ( ph -> ( U - Y ) e. RR* ) |
| 123 |
3
|
rexrd |
|- ( ph -> U e. RR* ) |
| 124 |
|
iooltub |
|- ( ( ( U - Y ) e. RR* /\ U e. RR* /\ P e. ( ( U - Y ) (,) U ) ) -> P < U ) |
| 125 |
122 123 10 124
|
syl3anc |
|- ( ph -> P < U ) |
| 126 |
3 120
|
readdcld |
|- ( ph -> ( U + Y ) e. RR ) |
| 127 |
126
|
rexrd |
|- ( ph -> ( U + Y ) e. RR* ) |
| 128 |
|
ioogtlb |
|- ( ( U e. RR* /\ ( U + Y ) e. RR* /\ R e. ( U (,) ( U + Y ) ) ) -> U < R ) |
| 129 |
123 127 11 128
|
syl3anc |
|- ( ph -> U < R ) |
| 130 |
86 88 3 125 129
|
eliood |
|- ( ph -> U e. ( P (,) R ) ) |
| 131 |
42
|
eqcomd |
|- ( ph -> ( P (,) R ) = ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) ) |
| 132 |
130 131
|
eleqtrd |
|- ( ph -> U e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) ) |
| 133 |
84 8
|
sselid |
|- ( ph -> S e. RR ) |
| 134 |
133
|
rexrd |
|- ( ph -> S e. RR* ) |
| 135 |
84 9
|
sselid |
|- ( ph -> Z e. RR ) |
| 136 |
135
|
rexrd |
|- ( ph -> Z e. RR* ) |
| 137 |
4 120
|
resubcld |
|- ( ph -> ( V - Y ) e. RR ) |
| 138 |
137
|
rexrd |
|- ( ph -> ( V - Y ) e. RR* ) |
| 139 |
4
|
rexrd |
|- ( ph -> V e. RR* ) |
| 140 |
|
iooltub |
|- ( ( ( V - Y ) e. RR* /\ V e. RR* /\ S e. ( ( V - Y ) (,) V ) ) -> S < V ) |
| 141 |
138 139 12 140
|
syl3anc |
|- ( ph -> S < V ) |
| 142 |
4 120
|
readdcld |
|- ( ph -> ( V + Y ) e. RR ) |
| 143 |
142
|
rexrd |
|- ( ph -> ( V + Y ) e. RR* ) |
| 144 |
|
ioogtlb |
|- ( ( V e. RR* /\ ( V + Y ) e. RR* /\ Z e. ( V (,) ( V + Y ) ) ) -> V < Z ) |
| 145 |
139 143 13 144
|
syl3anc |
|- ( ph -> V < Z ) |
| 146 |
134 136 4 141 145
|
eliood |
|- ( ph -> V e. ( S (,) Z ) ) |
| 147 |
50
|
eqcomd |
|- ( ph -> ( S (,) Z ) = ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) |
| 148 |
146 147
|
eleqtrd |
|- ( ph -> V e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) |
| 149 |
132 148
|
jca |
|- ( ph -> ( U e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) /\ V e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) ) |
| 150 |
|
nfv |
|- F/ q ( U e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) /\ V e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) |
| 151 |
|
nfcv |
|- F/_ q <" P R S Z "> |
| 152 |
|
nfrab1 |
|- F/_ q { q e. ( QQ ^m ( 0 ... 3 ) ) | A. u e. ( ( q ` 0 ) (,) ( q ` 1 ) ) A. v e. ( ( q ` 2 ) (,) ( q ` 3 ) ) ( u x. v ) < A } |
| 153 |
2 152
|
nfcxfr |
|- F/_ q K |
| 154 |
74
|
eleq2d |
|- ( q = <" P R S Z "> -> ( U e. ( ( q ` 0 ) (,) ( q ` 1 ) ) <-> U e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) ) ) |
| 155 |
78
|
eleq2d |
|- ( q = <" P R S Z "> -> ( V e. ( ( q ` 2 ) (,) ( q ` 3 ) ) <-> V e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) ) |
| 156 |
154 155
|
anbi12d |
|- ( q = <" P R S Z "> -> ( ( U e. ( ( q ` 0 ) (,) ( q ` 1 ) ) /\ V e. ( ( q ` 2 ) (,) ( q ` 3 ) ) ) <-> ( U e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) /\ V e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) ) ) |
| 157 |
150 151 153 156
|
rspcef |
|- ( ( <" P R S Z "> e. K /\ ( U e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) /\ V e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) ) -> E. q e. K ( U e. ( ( q ` 0 ) (,) ( q ` 1 ) ) /\ V e. ( ( q ` 2 ) (,) ( q ` 3 ) ) ) ) |
| 158 |
83 149 157
|
syl2anc |
|- ( ph -> E. q e. K ( U e. ( ( q ` 0 ) (,) ( q ` 1 ) ) /\ V e. ( ( q ` 2 ) (,) ( q ` 3 ) ) ) ) |