Step |
Hyp |
Ref |
Expression |
1 |
|
smfmullem2.a |
|- ( ph -> A e. RR ) |
2 |
|
smfmullem2.k |
|- K = { q e. ( QQ ^m ( 0 ... 3 ) ) | A. u e. ( ( q ` 0 ) (,) ( q ` 1 ) ) A. v e. ( ( q ` 2 ) (,) ( q ` 3 ) ) ( u x. v ) < A } |
3 |
|
smfmullem2.u |
|- ( ph -> U e. RR ) |
4 |
|
smfmullem2.v |
|- ( ph -> V e. RR ) |
5 |
|
smfmullem2.l |
|- ( ph -> ( U x. V ) < A ) |
6 |
|
smfmullem2.p |
|- ( ph -> P e. QQ ) |
7 |
|
smfmullem2.r |
|- ( ph -> R e. QQ ) |
8 |
|
smfmullem2.s |
|- ( ph -> S e. QQ ) |
9 |
|
smfmullem2.z |
|- ( ph -> Z e. QQ ) |
10 |
|
smfmullem2.p2 |
|- ( ph -> P e. ( ( U - Y ) (,) U ) ) |
11 |
|
smfmullem2.42 |
|- ( ph -> R e. ( U (,) ( U + Y ) ) ) |
12 |
|
smfmullem2.w2 |
|- ( ph -> S e. ( ( V - Y ) (,) V ) ) |
13 |
|
smfmullem2.z2 |
|- ( ph -> Z e. ( V (,) ( V + Y ) ) ) |
14 |
|
smfmullem2.x |
|- X = ( ( A - ( U x. V ) ) / ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) |
15 |
|
smfmullem2.y |
|- Y = if ( 1 <_ X , 1 , X ) |
16 |
6 7 8 9
|
s4cld |
|- ( ph -> <" P R S Z "> e. Word QQ ) |
17 |
|
s4len |
|- ( # ` <" P R S Z "> ) = 4 |
18 |
17
|
a1i |
|- ( ph -> ( # ` <" P R S Z "> ) = 4 ) |
19 |
16 18
|
jca |
|- ( ph -> ( <" P R S Z "> e. Word QQ /\ ( # ` <" P R S Z "> ) = 4 ) ) |
20 |
|
qex |
|- QQ e. _V |
21 |
20
|
a1i |
|- ( ph -> QQ e. _V ) |
22 |
|
4nn0 |
|- 4 e. NN0 |
23 |
22
|
a1i |
|- ( ph -> 4 e. NN0 ) |
24 |
|
wrdmap |
|- ( ( QQ e. _V /\ 4 e. NN0 ) -> ( ( <" P R S Z "> e. Word QQ /\ ( # ` <" P R S Z "> ) = 4 ) <-> <" P R S Z "> e. ( QQ ^m ( 0 ..^ 4 ) ) ) ) |
25 |
21 23 24
|
syl2anc |
|- ( ph -> ( ( <" P R S Z "> e. Word QQ /\ ( # ` <" P R S Z "> ) = 4 ) <-> <" P R S Z "> e. ( QQ ^m ( 0 ..^ 4 ) ) ) ) |
26 |
19 25
|
mpbid |
|- ( ph -> <" P R S Z "> e. ( QQ ^m ( 0 ..^ 4 ) ) ) |
27 |
|
3z |
|- 3 e. ZZ |
28 |
|
fzval3 |
|- ( 3 e. ZZ -> ( 0 ... 3 ) = ( 0 ..^ ( 3 + 1 ) ) ) |
29 |
27 28
|
ax-mp |
|- ( 0 ... 3 ) = ( 0 ..^ ( 3 + 1 ) ) |
30 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
31 |
30
|
oveq2i |
|- ( 0 ..^ ( 3 + 1 ) ) = ( 0 ..^ 4 ) |
32 |
29 31
|
eqtri |
|- ( 0 ... 3 ) = ( 0 ..^ 4 ) |
33 |
32
|
eqcomi |
|- ( 0 ..^ 4 ) = ( 0 ... 3 ) |
34 |
33
|
a1i |
|- ( ph -> ( 0 ..^ 4 ) = ( 0 ... 3 ) ) |
35 |
34
|
oveq2d |
|- ( ph -> ( QQ ^m ( 0 ..^ 4 ) ) = ( QQ ^m ( 0 ... 3 ) ) ) |
36 |
26 35
|
eleqtrd |
|- ( ph -> <" P R S Z "> e. ( QQ ^m ( 0 ... 3 ) ) ) |
37 |
|
simpr |
|- ( ( ph /\ u e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) ) -> u e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) ) |
38 |
|
s4fv0 |
|- ( P e. QQ -> ( <" P R S Z "> ` 0 ) = P ) |
39 |
6 38
|
syl |
|- ( ph -> ( <" P R S Z "> ` 0 ) = P ) |
40 |
|
s4fv1 |
|- ( R e. QQ -> ( <" P R S Z "> ` 1 ) = R ) |
41 |
7 40
|
syl |
|- ( ph -> ( <" P R S Z "> ` 1 ) = R ) |
42 |
39 41
|
oveq12d |
|- ( ph -> ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) = ( P (,) R ) ) |
43 |
42
|
adantr |
|- ( ( ph /\ u e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) ) -> ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) = ( P (,) R ) ) |
44 |
37 43
|
eleqtrd |
|- ( ( ph /\ u e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) ) -> u e. ( P (,) R ) ) |
45 |
|
simpr |
|- ( ( ph /\ v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) -> v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) |
46 |
|
s4fv2 |
|- ( S e. QQ -> ( <" P R S Z "> ` 2 ) = S ) |
47 |
8 46
|
syl |
|- ( ph -> ( <" P R S Z "> ` 2 ) = S ) |
48 |
|
s4fv3 |
|- ( Z e. QQ -> ( <" P R S Z "> ` 3 ) = Z ) |
49 |
9 48
|
syl |
|- ( ph -> ( <" P R S Z "> ` 3 ) = Z ) |
50 |
47 49
|
oveq12d |
|- ( ph -> ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) = ( S (,) Z ) ) |
51 |
50
|
adantr |
|- ( ( ph /\ v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) -> ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) = ( S (,) Z ) ) |
52 |
45 51
|
eleqtrd |
|- ( ( ph /\ v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) -> v e. ( S (,) Z ) ) |
53 |
|
simpr |
|- ( ( ph /\ v e. ( S (,) Z ) ) -> v e. ( S (,) Z ) ) |
54 |
52 53
|
syldan |
|- ( ( ph /\ v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) -> v e. ( S (,) Z ) ) |
55 |
54
|
adantlr |
|- ( ( ( ph /\ u e. ( P (,) R ) ) /\ v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) -> v e. ( S (,) Z ) ) |
56 |
1
|
ad2antrr |
|- ( ( ( ph /\ u e. ( P (,) R ) ) /\ v e. ( S (,) Z ) ) -> A e. RR ) |
57 |
3
|
ad2antrr |
|- ( ( ( ph /\ u e. ( P (,) R ) ) /\ v e. ( S (,) Z ) ) -> U e. RR ) |
58 |
4
|
ad2antrr |
|- ( ( ( ph /\ u e. ( P (,) R ) ) /\ v e. ( S (,) Z ) ) -> V e. RR ) |
59 |
5
|
ad2antrr |
|- ( ( ( ph /\ u e. ( P (,) R ) ) /\ v e. ( S (,) Z ) ) -> ( U x. V ) < A ) |
60 |
10
|
ad2antrr |
|- ( ( ( ph /\ u e. ( P (,) R ) ) /\ v e. ( S (,) Z ) ) -> P e. ( ( U - Y ) (,) U ) ) |
61 |
11
|
ad2antrr |
|- ( ( ( ph /\ u e. ( P (,) R ) ) /\ v e. ( S (,) Z ) ) -> R e. ( U (,) ( U + Y ) ) ) |
62 |
12
|
ad2antrr |
|- ( ( ( ph /\ u e. ( P (,) R ) ) /\ v e. ( S (,) Z ) ) -> S e. ( ( V - Y ) (,) V ) ) |
63 |
13
|
ad2antrr |
|- ( ( ( ph /\ u e. ( P (,) R ) ) /\ v e. ( S (,) Z ) ) -> Z e. ( V (,) ( V + Y ) ) ) |
64 |
|
simplr |
|- ( ( ( ph /\ u e. ( P (,) R ) ) /\ v e. ( S (,) Z ) ) -> u e. ( P (,) R ) ) |
65 |
|
simpr |
|- ( ( ( ph /\ u e. ( P (,) R ) ) /\ v e. ( S (,) Z ) ) -> v e. ( S (,) Z ) ) |
66 |
56 57 58 59 14 15 60 61 62 63 64 65
|
smfmullem1 |
|- ( ( ( ph /\ u e. ( P (,) R ) ) /\ v e. ( S (,) Z ) ) -> ( u x. v ) < A ) |
67 |
55 66
|
syldan |
|- ( ( ( ph /\ u e. ( P (,) R ) ) /\ v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) -> ( u x. v ) < A ) |
68 |
67
|
ralrimiva |
|- ( ( ph /\ u e. ( P (,) R ) ) -> A. v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ( u x. v ) < A ) |
69 |
44 68
|
syldan |
|- ( ( ph /\ u e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) ) -> A. v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ( u x. v ) < A ) |
70 |
69
|
ralrimiva |
|- ( ph -> A. u e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) A. v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ( u x. v ) < A ) |
71 |
36 70
|
jca |
|- ( ph -> ( <" P R S Z "> e. ( QQ ^m ( 0 ... 3 ) ) /\ A. u e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) A. v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ( u x. v ) < A ) ) |
72 |
|
fveq1 |
|- ( q = <" P R S Z "> -> ( q ` 0 ) = ( <" P R S Z "> ` 0 ) ) |
73 |
|
fveq1 |
|- ( q = <" P R S Z "> -> ( q ` 1 ) = ( <" P R S Z "> ` 1 ) ) |
74 |
72 73
|
oveq12d |
|- ( q = <" P R S Z "> -> ( ( q ` 0 ) (,) ( q ` 1 ) ) = ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) ) |
75 |
74
|
raleqdv |
|- ( q = <" P R S Z "> -> ( A. u e. ( ( q ` 0 ) (,) ( q ` 1 ) ) A. v e. ( ( q ` 2 ) (,) ( q ` 3 ) ) ( u x. v ) < A <-> A. u e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) A. v e. ( ( q ` 2 ) (,) ( q ` 3 ) ) ( u x. v ) < A ) ) |
76 |
|
fveq1 |
|- ( q = <" P R S Z "> -> ( q ` 2 ) = ( <" P R S Z "> ` 2 ) ) |
77 |
|
fveq1 |
|- ( q = <" P R S Z "> -> ( q ` 3 ) = ( <" P R S Z "> ` 3 ) ) |
78 |
76 77
|
oveq12d |
|- ( q = <" P R S Z "> -> ( ( q ` 2 ) (,) ( q ` 3 ) ) = ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) |
79 |
78
|
raleqdv |
|- ( q = <" P R S Z "> -> ( A. v e. ( ( q ` 2 ) (,) ( q ` 3 ) ) ( u x. v ) < A <-> A. v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ( u x. v ) < A ) ) |
80 |
79
|
ralbidv |
|- ( q = <" P R S Z "> -> ( A. u e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) A. v e. ( ( q ` 2 ) (,) ( q ` 3 ) ) ( u x. v ) < A <-> A. u e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) A. v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ( u x. v ) < A ) ) |
81 |
75 80
|
bitrd |
|- ( q = <" P R S Z "> -> ( A. u e. ( ( q ` 0 ) (,) ( q ` 1 ) ) A. v e. ( ( q ` 2 ) (,) ( q ` 3 ) ) ( u x. v ) < A <-> A. u e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) A. v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ( u x. v ) < A ) ) |
82 |
81 2
|
elrab2 |
|- ( <" P R S Z "> e. K <-> ( <" P R S Z "> e. ( QQ ^m ( 0 ... 3 ) ) /\ A. u e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) A. v e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ( u x. v ) < A ) ) |
83 |
71 82
|
sylibr |
|- ( ph -> <" P R S Z "> e. K ) |
84 |
|
qssre |
|- QQ C_ RR |
85 |
84 6
|
sselid |
|- ( ph -> P e. RR ) |
86 |
85
|
rexrd |
|- ( ph -> P e. RR* ) |
87 |
84 7
|
sselid |
|- ( ph -> R e. RR ) |
88 |
87
|
rexrd |
|- ( ph -> R e. RR* ) |
89 |
15
|
a1i |
|- ( ph -> Y = if ( 1 <_ X , 1 , X ) ) |
90 |
|
1rp |
|- 1 e. RR+ |
91 |
90
|
a1i |
|- ( ph -> 1 e. RR+ ) |
92 |
14
|
a1i |
|- ( ph -> X = ( ( A - ( U x. V ) ) / ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) ) |
93 |
3 4
|
remulcld |
|- ( ph -> ( U x. V ) e. RR ) |
94 |
|
difrp |
|- ( ( ( U x. V ) e. RR /\ A e. RR ) -> ( ( U x. V ) < A <-> ( A - ( U x. V ) ) e. RR+ ) ) |
95 |
93 1 94
|
syl2anc |
|- ( ph -> ( ( U x. V ) < A <-> ( A - ( U x. V ) ) e. RR+ ) ) |
96 |
5 95
|
mpbid |
|- ( ph -> ( A - ( U x. V ) ) e. RR+ ) |
97 |
|
1red |
|- ( ph -> 1 e. RR ) |
98 |
3
|
recnd |
|- ( ph -> U e. CC ) |
99 |
98
|
abscld |
|- ( ph -> ( abs ` U ) e. RR ) |
100 |
4
|
recnd |
|- ( ph -> V e. CC ) |
101 |
100
|
abscld |
|- ( ph -> ( abs ` V ) e. RR ) |
102 |
99 101
|
readdcld |
|- ( ph -> ( ( abs ` U ) + ( abs ` V ) ) e. RR ) |
103 |
97 102
|
readdcld |
|- ( ph -> ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) e. RR ) |
104 |
|
0re |
|- 0 e. RR |
105 |
104
|
a1i |
|- ( ph -> 0 e. RR ) |
106 |
91
|
rpgt0d |
|- ( ph -> 0 < 1 ) |
107 |
98
|
absge0d |
|- ( ph -> 0 <_ ( abs ` U ) ) |
108 |
100
|
absge0d |
|- ( ph -> 0 <_ ( abs ` V ) ) |
109 |
99 101
|
addge01d |
|- ( ph -> ( 0 <_ ( abs ` V ) <-> ( abs ` U ) <_ ( ( abs ` U ) + ( abs ` V ) ) ) ) |
110 |
108 109
|
mpbid |
|- ( ph -> ( abs ` U ) <_ ( ( abs ` U ) + ( abs ` V ) ) ) |
111 |
105 99 102 107 110
|
letrd |
|- ( ph -> 0 <_ ( ( abs ` U ) + ( abs ` V ) ) ) |
112 |
97 102
|
addge01d |
|- ( ph -> ( 0 <_ ( ( abs ` U ) + ( abs ` V ) ) <-> 1 <_ ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) ) |
113 |
111 112
|
mpbid |
|- ( ph -> 1 <_ ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) |
114 |
105 97 103 106 113
|
ltletrd |
|- ( ph -> 0 < ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) |
115 |
103 114
|
elrpd |
|- ( ph -> ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) e. RR+ ) |
116 |
96 115
|
rpdivcld |
|- ( ph -> ( ( A - ( U x. V ) ) / ( 1 + ( ( abs ` U ) + ( abs ` V ) ) ) ) e. RR+ ) |
117 |
92 116
|
eqeltrd |
|- ( ph -> X e. RR+ ) |
118 |
91 117
|
ifcld |
|- ( ph -> if ( 1 <_ X , 1 , X ) e. RR+ ) |
119 |
89 118
|
eqeltrd |
|- ( ph -> Y e. RR+ ) |
120 |
119
|
rpred |
|- ( ph -> Y e. RR ) |
121 |
3 120
|
resubcld |
|- ( ph -> ( U - Y ) e. RR ) |
122 |
121
|
rexrd |
|- ( ph -> ( U - Y ) e. RR* ) |
123 |
3
|
rexrd |
|- ( ph -> U e. RR* ) |
124 |
|
iooltub |
|- ( ( ( U - Y ) e. RR* /\ U e. RR* /\ P e. ( ( U - Y ) (,) U ) ) -> P < U ) |
125 |
122 123 10 124
|
syl3anc |
|- ( ph -> P < U ) |
126 |
3 120
|
readdcld |
|- ( ph -> ( U + Y ) e. RR ) |
127 |
126
|
rexrd |
|- ( ph -> ( U + Y ) e. RR* ) |
128 |
|
ioogtlb |
|- ( ( U e. RR* /\ ( U + Y ) e. RR* /\ R e. ( U (,) ( U + Y ) ) ) -> U < R ) |
129 |
123 127 11 128
|
syl3anc |
|- ( ph -> U < R ) |
130 |
86 88 3 125 129
|
eliood |
|- ( ph -> U e. ( P (,) R ) ) |
131 |
42
|
eqcomd |
|- ( ph -> ( P (,) R ) = ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) ) |
132 |
130 131
|
eleqtrd |
|- ( ph -> U e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) ) |
133 |
84 8
|
sselid |
|- ( ph -> S e. RR ) |
134 |
133
|
rexrd |
|- ( ph -> S e. RR* ) |
135 |
84 9
|
sselid |
|- ( ph -> Z e. RR ) |
136 |
135
|
rexrd |
|- ( ph -> Z e. RR* ) |
137 |
4 120
|
resubcld |
|- ( ph -> ( V - Y ) e. RR ) |
138 |
137
|
rexrd |
|- ( ph -> ( V - Y ) e. RR* ) |
139 |
4
|
rexrd |
|- ( ph -> V e. RR* ) |
140 |
|
iooltub |
|- ( ( ( V - Y ) e. RR* /\ V e. RR* /\ S e. ( ( V - Y ) (,) V ) ) -> S < V ) |
141 |
138 139 12 140
|
syl3anc |
|- ( ph -> S < V ) |
142 |
4 120
|
readdcld |
|- ( ph -> ( V + Y ) e. RR ) |
143 |
142
|
rexrd |
|- ( ph -> ( V + Y ) e. RR* ) |
144 |
|
ioogtlb |
|- ( ( V e. RR* /\ ( V + Y ) e. RR* /\ Z e. ( V (,) ( V + Y ) ) ) -> V < Z ) |
145 |
139 143 13 144
|
syl3anc |
|- ( ph -> V < Z ) |
146 |
134 136 4 141 145
|
eliood |
|- ( ph -> V e. ( S (,) Z ) ) |
147 |
50
|
eqcomd |
|- ( ph -> ( S (,) Z ) = ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) |
148 |
146 147
|
eleqtrd |
|- ( ph -> V e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) |
149 |
132 148
|
jca |
|- ( ph -> ( U e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) /\ V e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) ) |
150 |
|
nfv |
|- F/ q ( U e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) /\ V e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) |
151 |
|
nfcv |
|- F/_ q <" P R S Z "> |
152 |
|
nfrab1 |
|- F/_ q { q e. ( QQ ^m ( 0 ... 3 ) ) | A. u e. ( ( q ` 0 ) (,) ( q ` 1 ) ) A. v e. ( ( q ` 2 ) (,) ( q ` 3 ) ) ( u x. v ) < A } |
153 |
2 152
|
nfcxfr |
|- F/_ q K |
154 |
74
|
eleq2d |
|- ( q = <" P R S Z "> -> ( U e. ( ( q ` 0 ) (,) ( q ` 1 ) ) <-> U e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) ) ) |
155 |
78
|
eleq2d |
|- ( q = <" P R S Z "> -> ( V e. ( ( q ` 2 ) (,) ( q ` 3 ) ) <-> V e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) ) |
156 |
154 155
|
anbi12d |
|- ( q = <" P R S Z "> -> ( ( U e. ( ( q ` 0 ) (,) ( q ` 1 ) ) /\ V e. ( ( q ` 2 ) (,) ( q ` 3 ) ) ) <-> ( U e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) /\ V e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) ) ) |
157 |
150 151 153 156
|
rspcef |
|- ( ( <" P R S Z "> e. K /\ ( U e. ( ( <" P R S Z "> ` 0 ) (,) ( <" P R S Z "> ` 1 ) ) /\ V e. ( ( <" P R S Z "> ` 2 ) (,) ( <" P R S Z "> ` 3 ) ) ) ) -> E. q e. K ( U e. ( ( q ` 0 ) (,) ( q ` 1 ) ) /\ V e. ( ( q ` 2 ) (,) ( q ` 3 ) ) ) ) |
158 |
83 149 157
|
syl2anc |
|- ( ph -> E. q e. K ( U e. ( ( q ` 0 ) (,) ( q ` 1 ) ) /\ V e. ( ( q ` 2 ) (,) ( q ` 3 ) ) ) ) |