Metamath Proof Explorer


Theorem smfres

Description: The restriction of sigma-measurable function is sigma-measurable. Proposition 121E (h) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfres.s φ S SAlg
smfres.f φ F SMblFn S
smfres.a φ A V
Assertion smfres φ F A SMblFn S

Proof

Step Hyp Ref Expression
1 smfres.s φ S SAlg
2 smfres.f φ F SMblFn S
3 smfres.a φ A V
4 nfv a φ
5 inss1 dom F A dom F
6 5 a1i φ dom F A dom F
7 eqid dom F = dom F
8 1 2 7 smfdmss φ dom F S
9 6 8 sstrd φ dom F A S
10 1 2 7 smff φ F : dom F
11 fresin F : dom F F A : dom F A
12 10 11 syl φ F A : dom F A
13 ovexd φ a S 𝑡 dom F V
14 3 adantr φ a A V
15 1 adantr φ a S SAlg
16 2 adantr φ a F SMblFn S
17 mnfxr −∞ *
18 17 a1i φ a −∞ *
19 rexr a a *
20 19 adantl φ a a *
21 15 16 7 18 20 smfpimioo φ a F -1 −∞ a S 𝑡 dom F
22 eqid F -1 −∞ a A = F -1 −∞ a A
23 13 14 21 22 elrestd φ a F -1 −∞ a A S 𝑡 dom F 𝑡 A
24 10 ffund φ Fun F
25 respreima Fun F F A -1 −∞ a = F -1 −∞ a A
26 24 25 syl φ F A -1 −∞ a = F -1 −∞ a A
27 26 eqcomd φ F -1 −∞ a A = F A -1 −∞ a
28 27 adantr φ a F -1 −∞ a A = F A -1 −∞ a
29 12 adantr φ a F A : dom F A
30 29 20 preimaioomnf φ a F A -1 −∞ a = x dom F A | F A x < a
31 28 30 eqtr2d φ a x dom F A | F A x < a = F -1 −∞ a A
32 2 dmexd φ dom F V
33 restco S SAlg dom F V A V S 𝑡 dom F 𝑡 A = S 𝑡 dom F A
34 1 32 3 33 syl3anc φ S 𝑡 dom F 𝑡 A = S 𝑡 dom F A
35 34 adantr φ a S 𝑡 dom F 𝑡 A = S 𝑡 dom F A
36 35 eqcomd φ a S 𝑡 dom F A = S 𝑡 dom F 𝑡 A
37 31 36 eleq12d φ a x dom F A | F A x < a S 𝑡 dom F A F -1 −∞ a A S 𝑡 dom F 𝑡 A
38 23 37 mpbird φ a x dom F A | F A x < a S 𝑡 dom F A
39 4 1 9 12 38 issmfd φ F A SMblFn S