| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funfn |
|- ( Fun F <-> F Fn dom F ) |
| 2 |
|
elin |
|- ( x e. ( B i^i dom F ) <-> ( x e. B /\ x e. dom F ) ) |
| 3 |
2
|
biancomi |
|- ( x e. ( B i^i dom F ) <-> ( x e. dom F /\ x e. B ) ) |
| 4 |
3
|
anbi1i |
|- ( ( x e. ( B i^i dom F ) /\ ( ( F |` B ) ` x ) e. A ) <-> ( ( x e. dom F /\ x e. B ) /\ ( ( F |` B ) ` x ) e. A ) ) |
| 5 |
|
fvres |
|- ( x e. B -> ( ( F |` B ) ` x ) = ( F ` x ) ) |
| 6 |
5
|
eleq1d |
|- ( x e. B -> ( ( ( F |` B ) ` x ) e. A <-> ( F ` x ) e. A ) ) |
| 7 |
6
|
adantl |
|- ( ( x e. dom F /\ x e. B ) -> ( ( ( F |` B ) ` x ) e. A <-> ( F ` x ) e. A ) ) |
| 8 |
7
|
pm5.32i |
|- ( ( ( x e. dom F /\ x e. B ) /\ ( ( F |` B ) ` x ) e. A ) <-> ( ( x e. dom F /\ x e. B ) /\ ( F ` x ) e. A ) ) |
| 9 |
4 8
|
bitri |
|- ( ( x e. ( B i^i dom F ) /\ ( ( F |` B ) ` x ) e. A ) <-> ( ( x e. dom F /\ x e. B ) /\ ( F ` x ) e. A ) ) |
| 10 |
9
|
a1i |
|- ( F Fn dom F -> ( ( x e. ( B i^i dom F ) /\ ( ( F |` B ) ` x ) e. A ) <-> ( ( x e. dom F /\ x e. B ) /\ ( F ` x ) e. A ) ) ) |
| 11 |
|
an32 |
|- ( ( ( x e. dom F /\ x e. B ) /\ ( F ` x ) e. A ) <-> ( ( x e. dom F /\ ( F ` x ) e. A ) /\ x e. B ) ) |
| 12 |
10 11
|
bitrdi |
|- ( F Fn dom F -> ( ( x e. ( B i^i dom F ) /\ ( ( F |` B ) ` x ) e. A ) <-> ( ( x e. dom F /\ ( F ` x ) e. A ) /\ x e. B ) ) ) |
| 13 |
|
fnfun |
|- ( F Fn dom F -> Fun F ) |
| 14 |
13
|
funresd |
|- ( F Fn dom F -> Fun ( F |` B ) ) |
| 15 |
|
dmres |
|- dom ( F |` B ) = ( B i^i dom F ) |
| 16 |
|
df-fn |
|- ( ( F |` B ) Fn ( B i^i dom F ) <-> ( Fun ( F |` B ) /\ dom ( F |` B ) = ( B i^i dom F ) ) ) |
| 17 |
14 15 16
|
sylanblrc |
|- ( F Fn dom F -> ( F |` B ) Fn ( B i^i dom F ) ) |
| 18 |
|
elpreima |
|- ( ( F |` B ) Fn ( B i^i dom F ) -> ( x e. ( `' ( F |` B ) " A ) <-> ( x e. ( B i^i dom F ) /\ ( ( F |` B ) ` x ) e. A ) ) ) |
| 19 |
17 18
|
syl |
|- ( F Fn dom F -> ( x e. ( `' ( F |` B ) " A ) <-> ( x e. ( B i^i dom F ) /\ ( ( F |` B ) ` x ) e. A ) ) ) |
| 20 |
|
elin |
|- ( x e. ( ( `' F " A ) i^i B ) <-> ( x e. ( `' F " A ) /\ x e. B ) ) |
| 21 |
|
elpreima |
|- ( F Fn dom F -> ( x e. ( `' F " A ) <-> ( x e. dom F /\ ( F ` x ) e. A ) ) ) |
| 22 |
21
|
anbi1d |
|- ( F Fn dom F -> ( ( x e. ( `' F " A ) /\ x e. B ) <-> ( ( x e. dom F /\ ( F ` x ) e. A ) /\ x e. B ) ) ) |
| 23 |
20 22
|
bitrid |
|- ( F Fn dom F -> ( x e. ( ( `' F " A ) i^i B ) <-> ( ( x e. dom F /\ ( F ` x ) e. A ) /\ x e. B ) ) ) |
| 24 |
12 19 23
|
3bitr4d |
|- ( F Fn dom F -> ( x e. ( `' ( F |` B ) " A ) <-> x e. ( ( `' F " A ) i^i B ) ) ) |
| 25 |
1 24
|
sylbi |
|- ( Fun F -> ( x e. ( `' ( F |` B ) " A ) <-> x e. ( ( `' F " A ) i^i B ) ) ) |
| 26 |
25
|
eqrdv |
|- ( Fun F -> ( `' ( F |` B ) " A ) = ( ( `' F " A ) i^i B ) ) |