Metamath Proof Explorer


Theorem pimrecltneg

Description: The preimage of an unbounded below, open interval, with negative upper bound, for the reciprocal function. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses pimrecltneg.x x φ
pimrecltneg.b φ x A B
pimrecltneg.n φ x A B 0
pimrecltneg.c φ C
pimrecltneg.l φ C < 0
Assertion pimrecltneg φ x A | 1 B < C = x A | B 1 C 0

Proof

Step Hyp Ref Expression
1 pimrecltneg.x x φ
2 pimrecltneg.b φ x A B
3 pimrecltneg.n φ x A B 0
4 pimrecltneg.c φ C
5 pimrecltneg.l φ C < 0
6 rabidim1 x x A | 1 B < C x A
7 6 adantl φ x x A | 1 B < C x A
8 1red φ 1
9 4 5 ltned φ C 0
10 8 4 9 redivcld φ 1 C
11 10 rexrd φ 1 C *
12 11 adantr φ x x A | 1 B < C 1 C *
13 0xr 0 *
14 13 a1i φ x x A | 1 B < C 0 *
15 6 2 sylan2 φ x x A | 1 B < C B
16 rabidim2 x x A | 1 B < C 1 B < C
17 16 adantl φ x x A | 1 B < C 1 B < C
18 8 adantr φ x x A | 1 B < C 1
19 7 3 syldan φ x x A | 1 B < C B 0
20 15 19 rereccld φ x x A | 1 B < C 1 B
21 4 adantr φ x x A | 1 B < C C
22 0red φ x x A | 1 B < C 0
23 5 adantr φ x x A | 1 B < C C < 0
24 20 21 22 17 23 lttrd φ x x A | 1 B < C 1 B < 0
25 15 19 reclt0 φ x x A | 1 B < C B < 0 1 B < 0
26 24 25 mpbird φ x x A | 1 B < C B < 0
27 18 15 26 21 23 ltdiv23neg φ x x A | 1 B < C 1 B < C 1 C < B
28 17 27 mpbid φ x x A | 1 B < C 1 C < B
29 12 14 15 28 26 eliood φ x x A | 1 B < C B 1 C 0
30 7 29 jca φ x x A | 1 B < C x A B 1 C 0
31 rabid x x A | B 1 C 0 x A B 1 C 0
32 30 31 sylibr φ x x A | 1 B < C x x A | B 1 C 0
33 32 ex φ x x A | 1 B < C x x A | B 1 C 0
34 31 simplbi x x A | B 1 C 0 x A
35 34 adantl φ x x A | B 1 C 0 x A
36 11 adantr φ x x A | B 1 C 0 1 C *
37 13 a1i φ x x A | B 1 C 0 0 *
38 31 simprbi x x A | B 1 C 0 B 1 C 0
39 38 adantl φ x x A | B 1 C 0 B 1 C 0
40 36 37 39 ioogtlbd φ x x A | B 1 C 0 1 C < B
41 8 adantr φ x x A | B 1 C 0 1
42 4 adantr φ x x A | B 1 C 0 C
43 5 adantr φ x x A | B 1 C 0 C < 0
44 35 2 syldan φ x x A | B 1 C 0 B
45 36 37 39 iooltubd φ x x A | B 1 C 0 B < 0
46 41 42 43 44 45 ltdiv23neg φ x x A | B 1 C 0 1 C < B 1 B < C
47 40 46 mpbid φ x x A | B 1 C 0 1 B < C
48 35 47 jca φ x x A | B 1 C 0 x A 1 B < C
49 rabid x x A | 1 B < C x A 1 B < C
50 48 49 sylibr φ x x A | B 1 C 0 x x A | 1 B < C
51 50 ex φ x x A | B 1 C 0 x x A | 1 B < C
52 33 51 impbid φ x x A | 1 B < C x x A | B 1 C 0
53 1 52 alrimi φ x x x A | 1 B < C x x A | B 1 C 0
54 nfrab1 _ x x A | 1 B < C
55 nfrab1 _ x x A | B 1 C 0
56 54 55 cleqf x A | 1 B < C = x A | B 1 C 0 x x x A | 1 B < C x x A | B 1 C 0
57 53 56 sylibr φ x A | 1 B < C = x A | B 1 C 0