| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfpimgtmpt.x |  |-  F/ x ph | 
						
							| 2 |  | smfpimgtmpt.s |  |-  ( ph -> S e. SAlg ) | 
						
							| 3 |  | smfpimgtmpt.b |  |-  ( ( ph /\ x e. A ) -> B e. V ) | 
						
							| 4 |  | smfpimgtmpt.f |  |-  ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) | 
						
							| 5 |  | smfpimgtmpt.l |  |-  ( ph -> L e. RR ) | 
						
							| 6 |  | nfmpt1 |  |-  F/_ x ( x e. A |-> B ) | 
						
							| 7 |  | eqid |  |-  dom ( x e. A |-> B ) = dom ( x e. A |-> B ) | 
						
							| 8 | 6 2 4 7 5 | smfpreimagtf |  |-  ( ph -> { x e. dom ( x e. A |-> B ) | L < ( ( x e. A |-> B ) ` x ) } e. ( S |`t dom ( x e. A |-> B ) ) ) | 
						
							| 9 |  | eqid |  |-  ( x e. A |-> B ) = ( x e. A |-> B ) | 
						
							| 10 | 1 9 3 | dmmptdf |  |-  ( ph -> dom ( x e. A |-> B ) = A ) | 
						
							| 11 | 6 | nfdm |  |-  F/_ x dom ( x e. A |-> B ) | 
						
							| 12 |  | nfcv |  |-  F/_ x A | 
						
							| 13 | 11 12 | rabeqf |  |-  ( dom ( x e. A |-> B ) = A -> { x e. dom ( x e. A |-> B ) | L < ( ( x e. A |-> B ) ` x ) } = { x e. A | L < ( ( x e. A |-> B ) ` x ) } ) | 
						
							| 14 | 10 13 | syl |  |-  ( ph -> { x e. dom ( x e. A |-> B ) | L < ( ( x e. A |-> B ) ` x ) } = { x e. A | L < ( ( x e. A |-> B ) ` x ) } ) | 
						
							| 15 | 9 | a1i |  |-  ( ph -> ( x e. A |-> B ) = ( x e. A |-> B ) ) | 
						
							| 16 | 15 3 | fvmpt2d |  |-  ( ( ph /\ x e. A ) -> ( ( x e. A |-> B ) ` x ) = B ) | 
						
							| 17 | 16 | breq2d |  |-  ( ( ph /\ x e. A ) -> ( L < ( ( x e. A |-> B ) ` x ) <-> L < B ) ) | 
						
							| 18 | 1 17 | rabbida |  |-  ( ph -> { x e. A | L < ( ( x e. A |-> B ) ` x ) } = { x e. A | L < B } ) | 
						
							| 19 |  | eqidd |  |-  ( ph -> { x e. A | L < B } = { x e. A | L < B } ) | 
						
							| 20 | 14 18 19 | 3eqtrrd |  |-  ( ph -> { x e. A | L < B } = { x e. dom ( x e. A |-> B ) | L < ( ( x e. A |-> B ) ` x ) } ) | 
						
							| 21 | 10 | eqcomd |  |-  ( ph -> A = dom ( x e. A |-> B ) ) | 
						
							| 22 | 21 | oveq2d |  |-  ( ph -> ( S |`t A ) = ( S |`t dom ( x e. A |-> B ) ) ) | 
						
							| 23 | 20 22 | eleq12d |  |-  ( ph -> ( { x e. A | L < B } e. ( S |`t A ) <-> { x e. dom ( x e. A |-> B ) | L < ( ( x e. A |-> B ) ` x ) } e. ( S |`t dom ( x e. A |-> B ) ) ) ) | 
						
							| 24 | 8 23 | mpbird |  |-  ( ph -> { x e. A | L < B } e. ( S |`t A ) ) |