| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pimrecltpos.x |
|- F/ x ph |
| 2 |
|
pimrecltpos.b |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
| 3 |
|
pimrecltpos.n |
|- ( ( ph /\ x e. A ) -> B =/= 0 ) |
| 4 |
|
pimrecltpos.c |
|- ( ph -> C e. RR+ ) |
| 5 |
|
rabidim1 |
|- ( x e. { x e. A | ( 1 / B ) < C } -> x e. A ) |
| 6 |
5
|
adantr |
|- ( ( x e. { x e. A | ( 1 / B ) < C } /\ B < 0 ) -> x e. A ) |
| 7 |
|
simpr |
|- ( ( x e. { x e. A | ( 1 / B ) < C } /\ B < 0 ) -> B < 0 ) |
| 8 |
6 7
|
jca |
|- ( ( x e. { x e. A | ( 1 / B ) < C } /\ B < 0 ) -> ( x e. A /\ B < 0 ) ) |
| 9 |
|
rabid |
|- ( x e. { x e. A | B < 0 } <-> ( x e. A /\ B < 0 ) ) |
| 10 |
8 9
|
sylibr |
|- ( ( x e. { x e. A | ( 1 / B ) < C } /\ B < 0 ) -> x e. { x e. A | B < 0 } ) |
| 11 |
|
elun2 |
|- ( x e. { x e. A | B < 0 } -> x e. ( { x e. A | ( 1 / C ) < B } u. { x e. A | B < 0 } ) ) |
| 12 |
10 11
|
syl |
|- ( ( x e. { x e. A | ( 1 / B ) < C } /\ B < 0 ) -> x e. ( { x e. A | ( 1 / C ) < B } u. { x e. A | B < 0 } ) ) |
| 13 |
12
|
adantll |
|- ( ( ( ph /\ x e. { x e. A | ( 1 / B ) < C } ) /\ B < 0 ) -> x e. ( { x e. A | ( 1 / C ) < B } u. { x e. A | B < 0 } ) ) |
| 14 |
|
0red |
|- ( ( ( ph /\ x e. { x e. A | ( 1 / B ) < C } ) /\ -. B < 0 ) -> 0 e. RR ) |
| 15 |
5 2
|
sylan2 |
|- ( ( ph /\ x e. { x e. A | ( 1 / B ) < C } ) -> B e. RR ) |
| 16 |
15
|
adantr |
|- ( ( ( ph /\ x e. { x e. A | ( 1 / B ) < C } ) /\ -. B < 0 ) -> B e. RR ) |
| 17 |
5
|
adantl |
|- ( ( ph /\ x e. { x e. A | ( 1 / B ) < C } ) -> x e. A ) |
| 18 |
3
|
necomd |
|- ( ( ph /\ x e. A ) -> 0 =/= B ) |
| 19 |
17 18
|
syldan |
|- ( ( ph /\ x e. { x e. A | ( 1 / B ) < C } ) -> 0 =/= B ) |
| 20 |
19
|
adantr |
|- ( ( ( ph /\ x e. { x e. A | ( 1 / B ) < C } ) /\ -. B < 0 ) -> 0 =/= B ) |
| 21 |
|
simpr |
|- ( ( ( ph /\ x e. { x e. A | ( 1 / B ) < C } ) /\ -. B < 0 ) -> -. B < 0 ) |
| 22 |
14 16 20 21
|
lttri5d |
|- ( ( ( ph /\ x e. { x e. A | ( 1 / B ) < C } ) /\ -. B < 0 ) -> 0 < B ) |
| 23 |
17
|
adantr |
|- ( ( ( ph /\ x e. { x e. A | ( 1 / B ) < C } ) /\ 0 < B ) -> x e. A ) |
| 24 |
15
|
adantr |
|- ( ( ( ph /\ x e. { x e. A | ( 1 / B ) < C } ) /\ 0 < B ) -> B e. RR ) |
| 25 |
|
simpr |
|- ( ( ( ph /\ x e. { x e. A | ( 1 / B ) < C } ) /\ 0 < B ) -> 0 < B ) |
| 26 |
24 25
|
elrpd |
|- ( ( ( ph /\ x e. { x e. A | ( 1 / B ) < C } ) /\ 0 < B ) -> B e. RR+ ) |
| 27 |
4
|
ad2antrr |
|- ( ( ( ph /\ x e. { x e. A | ( 1 / B ) < C } ) /\ 0 < B ) -> C e. RR+ ) |
| 28 |
|
rabidim2 |
|- ( x e. { x e. A | ( 1 / B ) < C } -> ( 1 / B ) < C ) |
| 29 |
28
|
ad2antlr |
|- ( ( ( ph /\ x e. { x e. A | ( 1 / B ) < C } ) /\ 0 < B ) -> ( 1 / B ) < C ) |
| 30 |
26 27 29
|
ltrec1d |
|- ( ( ( ph /\ x e. { x e. A | ( 1 / B ) < C } ) /\ 0 < B ) -> ( 1 / C ) < B ) |
| 31 |
23 30
|
jca |
|- ( ( ( ph /\ x e. { x e. A | ( 1 / B ) < C } ) /\ 0 < B ) -> ( x e. A /\ ( 1 / C ) < B ) ) |
| 32 |
|
rabid |
|- ( x e. { x e. A | ( 1 / C ) < B } <-> ( x e. A /\ ( 1 / C ) < B ) ) |
| 33 |
31 32
|
sylibr |
|- ( ( ( ph /\ x e. { x e. A | ( 1 / B ) < C } ) /\ 0 < B ) -> x e. { x e. A | ( 1 / C ) < B } ) |
| 34 |
|
elun1 |
|- ( x e. { x e. A | ( 1 / C ) < B } -> x e. ( { x e. A | ( 1 / C ) < B } u. { x e. A | B < 0 } ) ) |
| 35 |
33 34
|
syl |
|- ( ( ( ph /\ x e. { x e. A | ( 1 / B ) < C } ) /\ 0 < B ) -> x e. ( { x e. A | ( 1 / C ) < B } u. { x e. A | B < 0 } ) ) |
| 36 |
22 35
|
syldan |
|- ( ( ( ph /\ x e. { x e. A | ( 1 / B ) < C } ) /\ -. B < 0 ) -> x e. ( { x e. A | ( 1 / C ) < B } u. { x e. A | B < 0 } ) ) |
| 37 |
13 36
|
pm2.61dan |
|- ( ( ph /\ x e. { x e. A | ( 1 / B ) < C } ) -> x e. ( { x e. A | ( 1 / C ) < B } u. { x e. A | B < 0 } ) ) |
| 38 |
37
|
ex |
|- ( ph -> ( x e. { x e. A | ( 1 / B ) < C } -> x e. ( { x e. A | ( 1 / C ) < B } u. { x e. A | B < 0 } ) ) ) |
| 39 |
32
|
simplbi |
|- ( x e. { x e. A | ( 1 / C ) < B } -> x e. A ) |
| 40 |
39
|
adantl |
|- ( ( ph /\ x e. { x e. A | ( 1 / C ) < B } ) -> x e. A ) |
| 41 |
4
|
adantr |
|- ( ( ph /\ x e. { x e. A | ( 1 / C ) < B } ) -> C e. RR+ ) |
| 42 |
40 2
|
syldan |
|- ( ( ph /\ x e. { x e. A | ( 1 / C ) < B } ) -> B e. RR ) |
| 43 |
|
0red |
|- ( ( ph /\ x e. { x e. A | ( 1 / C ) < B } ) -> 0 e. RR ) |
| 44 |
41
|
rprecred |
|- ( ( ph /\ x e. { x e. A | ( 1 / C ) < B } ) -> ( 1 / C ) e. RR ) |
| 45 |
4
|
rpred |
|- ( ph -> C e. RR ) |
| 46 |
4
|
rpgt0d |
|- ( ph -> 0 < C ) |
| 47 |
45 46
|
recgt0d |
|- ( ph -> 0 < ( 1 / C ) ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ x e. { x e. A | ( 1 / C ) < B } ) -> 0 < ( 1 / C ) ) |
| 49 |
32
|
simprbi |
|- ( x e. { x e. A | ( 1 / C ) < B } -> ( 1 / C ) < B ) |
| 50 |
49
|
adantl |
|- ( ( ph /\ x e. { x e. A | ( 1 / C ) < B } ) -> ( 1 / C ) < B ) |
| 51 |
43 44 42 48 50
|
lttrd |
|- ( ( ph /\ x e. { x e. A | ( 1 / C ) < B } ) -> 0 < B ) |
| 52 |
42 51
|
elrpd |
|- ( ( ph /\ x e. { x e. A | ( 1 / C ) < B } ) -> B e. RR+ ) |
| 53 |
41 52 50
|
ltrec1d |
|- ( ( ph /\ x e. { x e. A | ( 1 / C ) < B } ) -> ( 1 / B ) < C ) |
| 54 |
40 53
|
jca |
|- ( ( ph /\ x e. { x e. A | ( 1 / C ) < B } ) -> ( x e. A /\ ( 1 / B ) < C ) ) |
| 55 |
|
rabid |
|- ( x e. { x e. A | ( 1 / B ) < C } <-> ( x e. A /\ ( 1 / B ) < C ) ) |
| 56 |
54 55
|
sylibr |
|- ( ( ph /\ x e. { x e. A | ( 1 / C ) < B } ) -> x e. { x e. A | ( 1 / B ) < C } ) |
| 57 |
56
|
adantlr |
|- ( ( ( ph /\ x e. ( { x e. A | ( 1 / C ) < B } u. { x e. A | B < 0 } ) ) /\ x e. { x e. A | ( 1 / C ) < B } ) -> x e. { x e. A | ( 1 / B ) < C } ) |
| 58 |
|
simpll |
|- ( ( ( ph /\ x e. ( { x e. A | ( 1 / C ) < B } u. { x e. A | B < 0 } ) ) /\ -. x e. { x e. A | ( 1 / C ) < B } ) -> ph ) |
| 59 |
|
elunnel1 |
|- ( ( x e. ( { x e. A | ( 1 / C ) < B } u. { x e. A | B < 0 } ) /\ -. x e. { x e. A | ( 1 / C ) < B } ) -> x e. { x e. A | B < 0 } ) |
| 60 |
59
|
adantll |
|- ( ( ( ph /\ x e. ( { x e. A | ( 1 / C ) < B } u. { x e. A | B < 0 } ) ) /\ -. x e. { x e. A | ( 1 / C ) < B } ) -> x e. { x e. A | B < 0 } ) |
| 61 |
9
|
simplbi |
|- ( x e. { x e. A | B < 0 } -> x e. A ) |
| 62 |
61
|
adantl |
|- ( ( ph /\ x e. { x e. A | B < 0 } ) -> x e. A ) |
| 63 |
2 3
|
rereccld |
|- ( ( ph /\ x e. A ) -> ( 1 / B ) e. RR ) |
| 64 |
62 63
|
syldan |
|- ( ( ph /\ x e. { x e. A | B < 0 } ) -> ( 1 / B ) e. RR ) |
| 65 |
|
0red |
|- ( ( ph /\ x e. { x e. A | B < 0 } ) -> 0 e. RR ) |
| 66 |
45
|
adantr |
|- ( ( ph /\ x e. { x e. A | B < 0 } ) -> C e. RR ) |
| 67 |
62 2
|
syldan |
|- ( ( ph /\ x e. { x e. A | B < 0 } ) -> B e. RR ) |
| 68 |
9
|
simprbi |
|- ( x e. { x e. A | B < 0 } -> B < 0 ) |
| 69 |
68
|
adantl |
|- ( ( ph /\ x e. { x e. A | B < 0 } ) -> B < 0 ) |
| 70 |
67 69
|
reclt0d |
|- ( ( ph /\ x e. { x e. A | B < 0 } ) -> ( 1 / B ) < 0 ) |
| 71 |
46
|
adantr |
|- ( ( ph /\ x e. { x e. A | B < 0 } ) -> 0 < C ) |
| 72 |
64 65 66 70 71
|
lttrd |
|- ( ( ph /\ x e. { x e. A | B < 0 } ) -> ( 1 / B ) < C ) |
| 73 |
62 72
|
jca |
|- ( ( ph /\ x e. { x e. A | B < 0 } ) -> ( x e. A /\ ( 1 / B ) < C ) ) |
| 74 |
73 55
|
sylibr |
|- ( ( ph /\ x e. { x e. A | B < 0 } ) -> x e. { x e. A | ( 1 / B ) < C } ) |
| 75 |
58 60 74
|
syl2anc |
|- ( ( ( ph /\ x e. ( { x e. A | ( 1 / C ) < B } u. { x e. A | B < 0 } ) ) /\ -. x e. { x e. A | ( 1 / C ) < B } ) -> x e. { x e. A | ( 1 / B ) < C } ) |
| 76 |
57 75
|
pm2.61dan |
|- ( ( ph /\ x e. ( { x e. A | ( 1 / C ) < B } u. { x e. A | B < 0 } ) ) -> x e. { x e. A | ( 1 / B ) < C } ) |
| 77 |
76
|
ex |
|- ( ph -> ( x e. ( { x e. A | ( 1 / C ) < B } u. { x e. A | B < 0 } ) -> x e. { x e. A | ( 1 / B ) < C } ) ) |
| 78 |
38 77
|
impbid |
|- ( ph -> ( x e. { x e. A | ( 1 / B ) < C } <-> x e. ( { x e. A | ( 1 / C ) < B } u. { x e. A | B < 0 } ) ) ) |
| 79 |
1 78
|
alrimi |
|- ( ph -> A. x ( x e. { x e. A | ( 1 / B ) < C } <-> x e. ( { x e. A | ( 1 / C ) < B } u. { x e. A | B < 0 } ) ) ) |
| 80 |
|
nfrab1 |
|- F/_ x { x e. A | ( 1 / B ) < C } |
| 81 |
|
nfrab1 |
|- F/_ x { x e. A | ( 1 / C ) < B } |
| 82 |
|
nfrab1 |
|- F/_ x { x e. A | B < 0 } |
| 83 |
81 82
|
nfun |
|- F/_ x ( { x e. A | ( 1 / C ) < B } u. { x e. A | B < 0 } ) |
| 84 |
80 83
|
cleqf |
|- ( { x e. A | ( 1 / B ) < C } = ( { x e. A | ( 1 / C ) < B } u. { x e. A | B < 0 } ) <-> A. x ( x e. { x e. A | ( 1 / B ) < C } <-> x e. ( { x e. A | ( 1 / C ) < B } u. { x e. A | B < 0 } ) ) ) |
| 85 |
79 84
|
sylibr |
|- ( ph -> { x e. A | ( 1 / B ) < C } = ( { x e. A | ( 1 / C ) < B } u. { x e. A | B < 0 } ) ) |