Description: Membership in class union. Restricted quantifier version. (Contributed by Glauco Siliprandi, 26-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eluni2f.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| eluni2f.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
| Assertion | eluni2f | ⊢ ( 𝐴 ∈ ∪ 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni2f.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | eluni2f.2 | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | exancom | ⊢ ( ∃ 𝑥 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥 ) ) | |
| 4 | 1 2 | elunif | ⊢ ( 𝐴 ∈ ∪ 𝐵 ↔ ∃ 𝑥 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵 ) ) |
| 5 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝐴 ∈ 𝑥 ) ) | |
| 6 | 3 4 5 | 3bitr4i | ⊢ ( 𝐴 ∈ ∪ 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ) |