Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Basic measure theory
Measurable functions
smfpimltxrmpt
Metamath Proof Explorer
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of
an open interval unbounded below is in the subspace sigma-algebra
induced by its domain. (Contributed by Glauco Siliprandi , 26-Jun-2021)
(Revised by Glauco Siliprandi , 20-Dec-2024)
Ref
Expression
Hypotheses
smfpimltxrmpt.x
|- F/ x ph
smfpimltxrmpt.s
|- ( ph -> S e. SAlg )
smfpimltxrmpt.b
|- ( ( ph /\ x e. A ) -> B e. V )
smfpimltxrmpt.f
|- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) )
smfpimltxrmpt.r
|- ( ph -> R e. RR* )
Assertion
smfpimltxrmpt
|- ( ph -> { x e. A | B < R } e. ( S |`t A ) )
Proof
Step
Hyp
Ref
Expression
1
smfpimltxrmpt.x
|- F/ x ph
2
smfpimltxrmpt.s
|- ( ph -> S e. SAlg )
3
smfpimltxrmpt.b
|- ( ( ph /\ x e. A ) -> B e. V )
4
smfpimltxrmpt.f
|- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) )
5
smfpimltxrmpt.r
|- ( ph -> R e. RR* )
6
nfcv
|- F/_ x A
7
1 6 2 3 4 5
smfpimltxrmptf
|- ( ph -> { x e. A | B < R } e. ( S |`t A ) )