Metamath Proof Explorer


Theorem smfpimltxrmpt

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 20-Dec-2024)

Ref Expression
Hypotheses smfpimltxrmpt.x
|- F/ x ph
smfpimltxrmpt.s
|- ( ph -> S e. SAlg )
smfpimltxrmpt.b
|- ( ( ph /\ x e. A ) -> B e. V )
smfpimltxrmpt.f
|- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) )
smfpimltxrmpt.r
|- ( ph -> R e. RR* )
Assertion smfpimltxrmpt
|- ( ph -> { x e. A | B < R } e. ( S |`t A ) )

Proof

Step Hyp Ref Expression
1 smfpimltxrmpt.x
 |-  F/ x ph
2 smfpimltxrmpt.s
 |-  ( ph -> S e. SAlg )
3 smfpimltxrmpt.b
 |-  ( ( ph /\ x e. A ) -> B e. V )
4 smfpimltxrmpt.f
 |-  ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) )
5 smfpimltxrmpt.r
 |-  ( ph -> R e. RR* )
6 nfcv
 |-  F/_ x A
7 1 6 2 3 4 5 smfpimltxrmptf
 |-  ( ph -> { x e. A | B < R } e. ( S |`t A ) )