Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Glauco Siliprandi Basic measure theory Measurable functions smfpimltxrmpt  
				
		 
		
			
		 
		Description:   Given a function measurable w.r.t. to a sigma-algebra, the preimage of
       an open interval unbounded below is in the subspace sigma-algebra
       induced by its domain.  (Contributed by Glauco Siliprandi , 26-Jun-2021) 
       (Revised by Glauco Siliprandi , 20-Dec-2024) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						smfpimltxrmpt.x |- F/ x ph  
					
						smfpimltxrmpt.s |- ( ph -> S e. SAlg )  
					
						smfpimltxrmpt.b |- ( ( ph /\ x e. A ) -> B e. V )  
					
						smfpimltxrmpt.f |- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) )  
					
						smfpimltxrmpt.r |- ( ph -> R e. RR* )  
				
					Assertion 
					smfpimltxrmpt |- ( ph -> { x e. A | B < R } e. ( S |`t A ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							smfpimltxrmpt.x  |-  F/ x ph  
						
							2 
								
							 
							smfpimltxrmpt.s  |-  ( ph -> S e. SAlg )  
						
							3 
								
							 
							smfpimltxrmpt.b  |-  ( ( ph /\ x e. A ) -> B e. V )  
						
							4 
								
							 
							smfpimltxrmpt.f  |-  ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) )  
						
							5 
								
							 
							smfpimltxrmpt.r  |-  ( ph -> R e. RR* )  
						
							6 
								
							 
							nfcv  |-  F/_ x A  
						
							7 
								1  6  2  3  4  5 
							 
							smfpimltxrmptf  |-  ( ph -> { x e. A | B < R } e. ( S |`t A ) )