Step |
Hyp |
Ref |
Expression |
1 |
|
smfpimltxrmpt.x |
|- F/ x ph |
2 |
|
smfpimltxrmpt.s |
|- ( ph -> S e. SAlg ) |
3 |
|
smfpimltxrmpt.b |
|- ( ( ph /\ x e. A ) -> B e. V ) |
4 |
|
smfpimltxrmpt.f |
|- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) |
5 |
|
smfpimltxrmpt.r |
|- ( ph -> R e. RR* ) |
6 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> B ) |
7 |
6
|
nfdm |
|- F/_ x dom ( x e. A |-> B ) |
8 |
|
nfcv |
|- F/_ y dom ( x e. A |-> B ) |
9 |
|
nfv |
|- F/ y ( ( x e. A |-> B ) ` x ) < R |
10 |
|
nfcv |
|- F/_ x y |
11 |
6 10
|
nffv |
|- F/_ x ( ( x e. A |-> B ) ` y ) |
12 |
|
nfcv |
|- F/_ x < |
13 |
|
nfcv |
|- F/_ x R |
14 |
11 12 13
|
nfbr |
|- F/ x ( ( x e. A |-> B ) ` y ) < R |
15 |
|
fveq2 |
|- ( x = y -> ( ( x e. A |-> B ) ` x ) = ( ( x e. A |-> B ) ` y ) ) |
16 |
15
|
breq1d |
|- ( x = y -> ( ( ( x e. A |-> B ) ` x ) < R <-> ( ( x e. A |-> B ) ` y ) < R ) ) |
17 |
7 8 9 14 16
|
cbvrabw |
|- { x e. dom ( x e. A |-> B ) | ( ( x e. A |-> B ) ` x ) < R } = { y e. dom ( x e. A |-> B ) | ( ( x e. A |-> B ) ` y ) < R } |
18 |
17
|
a1i |
|- ( ph -> { x e. dom ( x e. A |-> B ) | ( ( x e. A |-> B ) ` x ) < R } = { y e. dom ( x e. A |-> B ) | ( ( x e. A |-> B ) ` y ) < R } ) |
19 |
|
nfcv |
|- F/_ y ( x e. A |-> B ) |
20 |
|
eqid |
|- dom ( x e. A |-> B ) = dom ( x e. A |-> B ) |
21 |
19 2 4 20 5
|
smfpimltxr |
|- ( ph -> { y e. dom ( x e. A |-> B ) | ( ( x e. A |-> B ) ` y ) < R } e. ( S |`t dom ( x e. A |-> B ) ) ) |
22 |
18 21
|
eqeltrd |
|- ( ph -> { x e. dom ( x e. A |-> B ) | ( ( x e. A |-> B ) ` x ) < R } e. ( S |`t dom ( x e. A |-> B ) ) ) |
23 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
24 |
1 23 3
|
dmmptdf |
|- ( ph -> dom ( x e. A |-> B ) = A ) |
25 |
|
nfcv |
|- F/_ x A |
26 |
7 25
|
rabeqf |
|- ( dom ( x e. A |-> B ) = A -> { x e. dom ( x e. A |-> B ) | ( ( x e. A |-> B ) ` x ) < R } = { x e. A | ( ( x e. A |-> B ) ` x ) < R } ) |
27 |
24 26
|
syl |
|- ( ph -> { x e. dom ( x e. A |-> B ) | ( ( x e. A |-> B ) ` x ) < R } = { x e. A | ( ( x e. A |-> B ) ` x ) < R } ) |
28 |
23
|
a1i |
|- ( ph -> ( x e. A |-> B ) = ( x e. A |-> B ) ) |
29 |
28 3
|
fvmpt2d |
|- ( ( ph /\ x e. A ) -> ( ( x e. A |-> B ) ` x ) = B ) |
30 |
29
|
breq1d |
|- ( ( ph /\ x e. A ) -> ( ( ( x e. A |-> B ) ` x ) < R <-> B < R ) ) |
31 |
1 30
|
rabbida |
|- ( ph -> { x e. A | ( ( x e. A |-> B ) ` x ) < R } = { x e. A | B < R } ) |
32 |
|
eqidd |
|- ( ph -> { x e. A | B < R } = { x e. A | B < R } ) |
33 |
27 31 32
|
3eqtrrd |
|- ( ph -> { x e. A | B < R } = { x e. dom ( x e. A |-> B ) | ( ( x e. A |-> B ) ` x ) < R } ) |
34 |
24
|
eqcomd |
|- ( ph -> A = dom ( x e. A |-> B ) ) |
35 |
34
|
oveq2d |
|- ( ph -> ( S |`t A ) = ( S |`t dom ( x e. A |-> B ) ) ) |
36 |
33 35
|
eleq12d |
|- ( ph -> ( { x e. A | B < R } e. ( S |`t A ) <-> { x e. dom ( x e. A |-> B ) | ( ( x e. A |-> B ) ` x ) < R } e. ( S |`t dom ( x e. A |-> B ) ) ) ) |
37 |
22 36
|
mpbird |
|- ( ph -> { x e. A | B < R } e. ( S |`t A ) ) |