Metamath Proof Explorer


Theorem smfpimltxrmpt

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpimltxrmpt.x x φ
smfpimltxrmpt.s φ S SAlg
smfpimltxrmpt.b φ x A B V
smfpimltxrmpt.f φ x A B SMblFn S
smfpimltxrmpt.r φ R *
Assertion smfpimltxrmpt φ x A | B < R S 𝑡 A

Proof

Step Hyp Ref Expression
1 smfpimltxrmpt.x x φ
2 smfpimltxrmpt.s φ S SAlg
3 smfpimltxrmpt.b φ x A B V
4 smfpimltxrmpt.f φ x A B SMblFn S
5 smfpimltxrmpt.r φ R *
6 nfmpt1 _ x x A B
7 6 nfdm _ x dom x A B
8 nfcv _ y dom x A B
9 nfv y x A B x < R
10 nfcv _ x y
11 6 10 nffv _ x x A B y
12 nfcv _ x <
13 nfcv _ x R
14 11 12 13 nfbr x x A B y < R
15 fveq2 x = y x A B x = x A B y
16 15 breq1d x = y x A B x < R x A B y < R
17 7 8 9 14 16 cbvrabw x dom x A B | x A B x < R = y dom x A B | x A B y < R
18 17 a1i φ x dom x A B | x A B x < R = y dom x A B | x A B y < R
19 nfcv _ y x A B
20 eqid dom x A B = dom x A B
21 19 2 4 20 5 smfpimltxr φ y dom x A B | x A B y < R S 𝑡 dom x A B
22 18 21 eqeltrd φ x dom x A B | x A B x < R S 𝑡 dom x A B
23 eqid x A B = x A B
24 1 23 3 dmmptdf φ dom x A B = A
25 nfcv _ x A
26 7 25 rabeqf dom x A B = A x dom x A B | x A B x < R = x A | x A B x < R
27 24 26 syl φ x dom x A B | x A B x < R = x A | x A B x < R
28 23 a1i φ x A B = x A B
29 28 3 fvmpt2d φ x A x A B x = B
30 29 breq1d φ x A x A B x < R B < R
31 1 30 rabbida φ x A | x A B x < R = x A | B < R
32 eqidd φ x A | B < R = x A | B < R
33 27 31 32 3eqtrrd φ x A | B < R = x dom x A B | x A B x < R
34 24 eqcomd φ A = dom x A B
35 34 oveq2d φ S 𝑡 A = S 𝑡 dom x A B
36 33 35 eleq12d φ x A | B < R S 𝑡 A x dom x A B | x A B x < R S 𝑡 dom x A B
37 22 36 mpbird φ x A | B < R S 𝑡 A