Metamath Proof Explorer


Theorem smfpimltxrmpt

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 20-Dec-2024)

Ref Expression
Hypotheses smfpimltxrmpt.x x φ
smfpimltxrmpt.s φ S SAlg
smfpimltxrmpt.b φ x A B V
smfpimltxrmpt.f φ x A B SMblFn S
smfpimltxrmpt.r φ R *
Assertion smfpimltxrmpt φ x A | B < R S 𝑡 A

Proof

Step Hyp Ref Expression
1 smfpimltxrmpt.x x φ
2 smfpimltxrmpt.s φ S SAlg
3 smfpimltxrmpt.b φ x A B V
4 smfpimltxrmpt.f φ x A B SMblFn S
5 smfpimltxrmpt.r φ R *
6 nfcv _ x A
7 1 6 2 3 4 5 smfpimltxrmptf φ x A | B < R S 𝑡 A