Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Basic measure theory
Measurable functions
smfpimltxrmpt
Metamath Proof Explorer
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of
an open interval unbounded below is in the subspace sigma-algebra
induced by its domain. (Contributed by Glauco Siliprandi , 26-Jun-2021)
(Revised by Glauco Siliprandi , 20-Dec-2024)
Ref
Expression
Hypotheses
smfpimltxrmpt.x
⊢ Ⅎ x φ
smfpimltxrmpt.s
⊢ φ → S ∈ SAlg
smfpimltxrmpt.b
⊢ φ ∧ x ∈ A → B ∈ V
smfpimltxrmpt.f
⊢ φ → x ∈ A ⟼ B ∈ SMblFn ⁡ S
smfpimltxrmpt.r
⊢ φ → R ∈ ℝ *
Assertion
smfpimltxrmpt
⊢ φ → x ∈ A | B < R ∈ S ↾ 𝑡 A
Proof
Step
Hyp
Ref
Expression
1
smfpimltxrmpt.x
⊢ Ⅎ x φ
2
smfpimltxrmpt.s
⊢ φ → S ∈ SAlg
3
smfpimltxrmpt.b
⊢ φ ∧ x ∈ A → B ∈ V
4
smfpimltxrmpt.f
⊢ φ → x ∈ A ⟼ B ∈ SMblFn ⁡ S
5
smfpimltxrmpt.r
⊢ φ → R ∈ ℝ *
6
nfcv
⊢ Ⅎ _ x A
7
1 6 2 3 4 5
smfpimltxrmptf
⊢ φ → x ∈ A | B < R ∈ S ↾ 𝑡 A