Metamath Proof Explorer


Theorem smfpimltxrmpt

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 20-Dec-2024)

Ref Expression
Hypotheses smfpimltxrmpt.x 𝑥 𝜑
smfpimltxrmpt.s ( 𝜑𝑆 ∈ SAlg )
smfpimltxrmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
smfpimltxrmpt.f ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )
smfpimltxrmpt.r ( 𝜑𝑅 ∈ ℝ* )
Assertion smfpimltxrmpt ( 𝜑 → { 𝑥𝐴𝐵 < 𝑅 } ∈ ( 𝑆t 𝐴 ) )

Proof

Step Hyp Ref Expression
1 smfpimltxrmpt.x 𝑥 𝜑
2 smfpimltxrmpt.s ( 𝜑𝑆 ∈ SAlg )
3 smfpimltxrmpt.b ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
4 smfpimltxrmpt.f ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )
5 smfpimltxrmpt.r ( 𝜑𝑅 ∈ ℝ* )
6 nfcv 𝑥 𝐴
7 1 6 2 3 4 5 smfpimltxrmptf ( 𝜑 → { 𝑥𝐴𝐵 < 𝑅 } ∈ ( 𝑆t 𝐴 ) )