Metamath Proof Explorer


Theorem smfmbfcex

Description: A constant function, with non-lebesgue-measurable domain is a sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) but it is not a measurable functions ( w.r.t. to df-mbf ). (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfmbfcex.s 𝑆 = dom vol
smfmbfcex.x ( 𝜑𝑋 ⊆ ℝ )
smfmbfcex.n ( 𝜑 → ¬ 𝑋𝑆 )
smfmbfcex.f 𝐹 = ( 𝑥𝑋 ↦ 0 )
Assertion smfmbfcex ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ∧ ¬ 𝐹 ∈ MblFn ) )

Proof

Step Hyp Ref Expression
1 smfmbfcex.s 𝑆 = dom vol
2 smfmbfcex.x ( 𝜑𝑋 ⊆ ℝ )
3 smfmbfcex.n ( 𝜑 → ¬ 𝑋𝑆 )
4 smfmbfcex.f 𝐹 = ( 𝑥𝑋 ↦ 0 )
5 nfv 𝑥 𝜑
6 dmvolsal dom vol ∈ SAlg
7 1 6 eqeltri 𝑆 ∈ SAlg
8 7 a1i ( 𝜑𝑆 ∈ SAlg )
9 1 unieqi 𝑆 = dom vol
10 unidmvol dom vol = ℝ
11 9 10 eqtri 𝑆 = ℝ
12 2 11 sseqtrrdi ( 𝜑𝑋 𝑆 )
13 0red ( 𝜑 → 0 ∈ ℝ )
14 5 8 12 13 4 smfconst ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
15 0red ( ( 𝜑𝑥𝑋 ) → 0 ∈ ℝ )
16 4 15 dmmptd ( 𝜑 → dom 𝐹 = 𝑋 )
17 1 eqcomi dom vol = 𝑆
18 17 a1i ( 𝜑 → dom vol = 𝑆 )
19 16 18 eleq12d ( 𝜑 → ( dom 𝐹 ∈ dom vol ↔ 𝑋𝑆 ) )
20 3 19 mtbird ( 𝜑 → ¬ dom 𝐹 ∈ dom vol )
21 mbfdm ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol )
22 20 21 nsyl ( 𝜑 → ¬ 𝐹 ∈ MblFn )
23 14 22 jca ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ∧ ¬ 𝐹 ∈ MblFn ) )