| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfmbfcex.s |
⊢ 𝑆 = dom vol |
| 2 |
|
smfmbfcex.x |
⊢ ( 𝜑 → 𝑋 ⊆ ℝ ) |
| 3 |
|
smfmbfcex.n |
⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑆 ) |
| 4 |
|
smfmbfcex.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ 0 ) |
| 5 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 6 |
|
dmvolsal |
⊢ dom vol ∈ SAlg |
| 7 |
1 6
|
eqeltri |
⊢ 𝑆 ∈ SAlg |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 9 |
1
|
unieqi |
⊢ ∪ 𝑆 = ∪ dom vol |
| 10 |
|
unidmvol |
⊢ ∪ dom vol = ℝ |
| 11 |
9 10
|
eqtri |
⊢ ∪ 𝑆 = ℝ |
| 12 |
2 11
|
sseqtrrdi |
⊢ ( 𝜑 → 𝑋 ⊆ ∪ 𝑆 ) |
| 13 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 14 |
5 8 12 13 4
|
smfconst |
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
| 15 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 ∈ ℝ ) |
| 16 |
4 15
|
dmmptd |
⊢ ( 𝜑 → dom 𝐹 = 𝑋 ) |
| 17 |
1
|
eqcomi |
⊢ dom vol = 𝑆 |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → dom vol = 𝑆 ) |
| 19 |
16 18
|
eleq12d |
⊢ ( 𝜑 → ( dom 𝐹 ∈ dom vol ↔ 𝑋 ∈ 𝑆 ) ) |
| 20 |
3 19
|
mtbird |
⊢ ( 𝜑 → ¬ dom 𝐹 ∈ dom vol ) |
| 21 |
|
mbfdm |
⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) |
| 22 |
20 21
|
nsyl |
⊢ ( 𝜑 → ¬ 𝐹 ∈ MblFn ) |
| 23 |
14 22
|
jca |
⊢ ( 𝜑 → ( 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ∧ ¬ 𝐹 ∈ MblFn ) ) |