| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issmfgtd.a | ⊢ Ⅎ 𝑎 𝜑 | 
						
							| 2 |  | issmfgtd.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 3 |  | issmfgtd.d | ⊢ ( 𝜑  →  𝐷  ⊆  ∪  𝑆 ) | 
						
							| 4 |  | issmfgtd.f | ⊢ ( 𝜑  →  𝐹 : 𝐷 ⟶ ℝ ) | 
						
							| 5 |  | issmfgtd.p | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  𝐷  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 6 | 4 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  𝐷 ) | 
						
							| 7 | 6 3 | eqsstrd | ⊢ ( 𝜑  →  dom  𝐹  ⊆  ∪  𝑆 ) | 
						
							| 8 | 4 | ffdmd | ⊢ ( 𝜑  →  𝐹 : dom  𝐹 ⟶ ℝ ) | 
						
							| 9 | 6 | rabeqdv | ⊢ ( 𝜑  →  { 𝑥  ∈  dom  𝐹  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  =  { 𝑥  ∈  𝐷  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) } ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  dom  𝐹  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  =  { 𝑥  ∈  𝐷  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) } ) | 
						
							| 11 | 6 | oveq2d | ⊢ ( 𝜑  →  ( 𝑆  ↾t  dom  𝐹 )  =  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( 𝑆  ↾t  dom  𝐹 )  =  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 13 | 10 12 | eleq12d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( { 𝑥  ∈  dom  𝐹  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  dom  𝐹 )  ↔  { 𝑥  ∈  𝐷  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 14 | 5 13 | mpbird | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  { 𝑥  ∈  dom  𝐹  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) | 
						
							| 15 | 14 | ex | ⊢ ( 𝜑  →  ( 𝑎  ∈  ℝ  →  { 𝑥  ∈  dom  𝐹  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) ) | 
						
							| 16 | 1 15 | ralrimi | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  dom  𝐹  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) | 
						
							| 17 | 7 8 16 | 3jca | ⊢ ( 𝜑  →  ( dom  𝐹  ⊆  ∪  𝑆  ∧  𝐹 : dom  𝐹 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  dom  𝐹  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) ) | 
						
							| 18 |  | eqid | ⊢ dom  𝐹  =  dom  𝐹 | 
						
							| 19 | 2 18 | issmfgt | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( SMblFn ‘ 𝑆 )  ↔  ( dom  𝐹  ⊆  ∪  𝑆  ∧  𝐹 : dom  𝐹 ⟶ ℝ  ∧  ∀ 𝑎  ∈  ℝ { 𝑥  ∈  dom  𝐹  ∣  𝑎  <  ( 𝐹 ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  dom  𝐹 ) ) ) ) | 
						
							| 20 | 17 19 | mpbird | ⊢ ( 𝜑  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) |