Metamath Proof Explorer


Theorem issmfgtd

Description: A sufficient condition for " F being a measurable function w.r.t. to the sigma-algebra S ". (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses issmfgtd.a a φ
issmfgtd.s φ S SAlg
issmfgtd.d φ D S
issmfgtd.f φ F : D
issmfgtd.p φ a x D | a < F x S 𝑡 D
Assertion issmfgtd φ F SMblFn S

Proof

Step Hyp Ref Expression
1 issmfgtd.a a φ
2 issmfgtd.s φ S SAlg
3 issmfgtd.d φ D S
4 issmfgtd.f φ F : D
5 issmfgtd.p φ a x D | a < F x S 𝑡 D
6 4 fdmd φ dom F = D
7 6 3 eqsstrd φ dom F S
8 4 ffdmd φ F : dom F
9 6 rabeqdv φ x dom F | a < F x = x D | a < F x
10 9 adantr φ a x dom F | a < F x = x D | a < F x
11 6 oveq2d φ S 𝑡 dom F = S 𝑡 D
12 11 adantr φ a S 𝑡 dom F = S 𝑡 D
13 10 12 eleq12d φ a x dom F | a < F x S 𝑡 dom F x D | a < F x S 𝑡 D
14 5 13 mpbird φ a x dom F | a < F x S 𝑡 dom F
15 14 ex φ a x dom F | a < F x S 𝑡 dom F
16 1 15 ralrimi φ a x dom F | a < F x S 𝑡 dom F
17 7 8 16 3jca φ dom F S F : dom F a x dom F | a < F x S 𝑡 dom F
18 eqid dom F = dom F
19 2 18 issmfgt φ F SMblFn S dom F S F : dom F a x dom F | a < F x S 𝑡 dom F
20 17 19 mpbird φ F SMblFn S