Metamath Proof Explorer


Theorem issmfgtd

Description: A sufficient condition for " F being a measurable function w.r.t. to the sigma-algebra S ". (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses issmfgtd.a aφ
issmfgtd.s φSSAlg
issmfgtd.d φDS
issmfgtd.f φF:D
issmfgtd.p φaxD|a<FxS𝑡D
Assertion issmfgtd φFSMblFnS

Proof

Step Hyp Ref Expression
1 issmfgtd.a aφ
2 issmfgtd.s φSSAlg
3 issmfgtd.d φDS
4 issmfgtd.f φF:D
5 issmfgtd.p φaxD|a<FxS𝑡D
6 4 fdmd φdomF=D
7 6 3 eqsstrd φdomFS
8 4 ffdmd φF:domF
9 6 rabeqdv φxdomF|a<Fx=xD|a<Fx
10 9 adantr φaxdomF|a<Fx=xD|a<Fx
11 6 oveq2d φS𝑡domF=S𝑡D
12 11 adantr φaS𝑡domF=S𝑡D
13 10 12 eleq12d φaxdomF|a<FxS𝑡domFxD|a<FxS𝑡D
14 5 13 mpbird φaxdomF|a<FxS𝑡domF
15 14 ex φaxdomF|a<FxS𝑡domF
16 1 15 ralrimi φaxdomF|a<FxS𝑡domF
17 7 8 16 3jca φdomFSF:domFaxdomF|a<FxS𝑡domF
18 eqid domF=domF
19 2 18 issmfgt φFSMblFnSdomFSF:domFaxdomF|a<FxS𝑡domF
20 17 19 mpbird φFSMblFnS