Step |
Hyp |
Ref |
Expression |
1 |
|
issmfgtd.a |
|- F/ a ph |
2 |
|
issmfgtd.s |
|- ( ph -> S e. SAlg ) |
3 |
|
issmfgtd.d |
|- ( ph -> D C_ U. S ) |
4 |
|
issmfgtd.f |
|- ( ph -> F : D --> RR ) |
5 |
|
issmfgtd.p |
|- ( ( ph /\ a e. RR ) -> { x e. D | a < ( F ` x ) } e. ( S |`t D ) ) |
6 |
4
|
fdmd |
|- ( ph -> dom F = D ) |
7 |
6 3
|
eqsstrd |
|- ( ph -> dom F C_ U. S ) |
8 |
4
|
ffdmd |
|- ( ph -> F : dom F --> RR ) |
9 |
6
|
rabeqdv |
|- ( ph -> { x e. dom F | a < ( F ` x ) } = { x e. D | a < ( F ` x ) } ) |
10 |
9
|
adantr |
|- ( ( ph /\ a e. RR ) -> { x e. dom F | a < ( F ` x ) } = { x e. D | a < ( F ` x ) } ) |
11 |
6
|
oveq2d |
|- ( ph -> ( S |`t dom F ) = ( S |`t D ) ) |
12 |
11
|
adantr |
|- ( ( ph /\ a e. RR ) -> ( S |`t dom F ) = ( S |`t D ) ) |
13 |
10 12
|
eleq12d |
|- ( ( ph /\ a e. RR ) -> ( { x e. dom F | a < ( F ` x ) } e. ( S |`t dom F ) <-> { x e. D | a < ( F ` x ) } e. ( S |`t D ) ) ) |
14 |
5 13
|
mpbird |
|- ( ( ph /\ a e. RR ) -> { x e. dom F | a < ( F ` x ) } e. ( S |`t dom F ) ) |
15 |
14
|
ex |
|- ( ph -> ( a e. RR -> { x e. dom F | a < ( F ` x ) } e. ( S |`t dom F ) ) ) |
16 |
1 15
|
ralrimi |
|- ( ph -> A. a e. RR { x e. dom F | a < ( F ` x ) } e. ( S |`t dom F ) ) |
17 |
7 8 16
|
3jca |
|- ( ph -> ( dom F C_ U. S /\ F : dom F --> RR /\ A. a e. RR { x e. dom F | a < ( F ` x ) } e. ( S |`t dom F ) ) ) |
18 |
|
eqid |
|- dom F = dom F |
19 |
2 18
|
issmfgt |
|- ( ph -> ( F e. ( SMblFn ` S ) <-> ( dom F C_ U. S /\ F : dom F --> RR /\ A. a e. RR { x e. dom F | a < ( F ` x ) } e. ( S |`t dom F ) ) ) ) |
20 |
17 19
|
mpbird |
|- ( ph -> F e. ( SMblFn ` S ) ) |