Metamath Proof Explorer


Theorem smfmbfcex

Description: A constant function, with non-lebesgue-measurable domain is a sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) but it is not a measurable functions ( w.r.t. to df-mbf ). (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfmbfcex.s
|- S = dom vol
smfmbfcex.x
|- ( ph -> X C_ RR )
smfmbfcex.n
|- ( ph -> -. X e. S )
smfmbfcex.f
|- F = ( x e. X |-> 0 )
Assertion smfmbfcex
|- ( ph -> ( F e. ( SMblFn ` S ) /\ -. F e. MblFn ) )

Proof

Step Hyp Ref Expression
1 smfmbfcex.s
 |-  S = dom vol
2 smfmbfcex.x
 |-  ( ph -> X C_ RR )
3 smfmbfcex.n
 |-  ( ph -> -. X e. S )
4 smfmbfcex.f
 |-  F = ( x e. X |-> 0 )
5 nfv
 |-  F/ x ph
6 dmvolsal
 |-  dom vol e. SAlg
7 1 6 eqeltri
 |-  S e. SAlg
8 7 a1i
 |-  ( ph -> S e. SAlg )
9 1 unieqi
 |-  U. S = U. dom vol
10 unidmvol
 |-  U. dom vol = RR
11 9 10 eqtri
 |-  U. S = RR
12 2 11 sseqtrrdi
 |-  ( ph -> X C_ U. S )
13 0red
 |-  ( ph -> 0 e. RR )
14 5 8 12 13 4 smfconst
 |-  ( ph -> F e. ( SMblFn ` S ) )
15 0red
 |-  ( ( ph /\ x e. X ) -> 0 e. RR )
16 4 15 dmmptd
 |-  ( ph -> dom F = X )
17 1 eqcomi
 |-  dom vol = S
18 17 a1i
 |-  ( ph -> dom vol = S )
19 16 18 eleq12d
 |-  ( ph -> ( dom F e. dom vol <-> X e. S ) )
20 3 19 mtbird
 |-  ( ph -> -. dom F e. dom vol )
21 mbfdm
 |-  ( F e. MblFn -> dom F e. dom vol )
22 20 21 nsyl
 |-  ( ph -> -. F e. MblFn )
23 14 22 jca
 |-  ( ph -> ( F e. ( SMblFn ` S ) /\ -. F e. MblFn ) )