| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfmbfcex.s |
|- S = dom vol |
| 2 |
|
smfmbfcex.x |
|- ( ph -> X C_ RR ) |
| 3 |
|
smfmbfcex.n |
|- ( ph -> -. X e. S ) |
| 4 |
|
smfmbfcex.f |
|- F = ( x e. X |-> 0 ) |
| 5 |
|
nfv |
|- F/ x ph |
| 6 |
|
dmvolsal |
|- dom vol e. SAlg |
| 7 |
1 6
|
eqeltri |
|- S e. SAlg |
| 8 |
7
|
a1i |
|- ( ph -> S e. SAlg ) |
| 9 |
1
|
unieqi |
|- U. S = U. dom vol |
| 10 |
|
unidmvol |
|- U. dom vol = RR |
| 11 |
9 10
|
eqtri |
|- U. S = RR |
| 12 |
2 11
|
sseqtrrdi |
|- ( ph -> X C_ U. S ) |
| 13 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 14 |
5 8 12 13 4
|
smfconst |
|- ( ph -> F e. ( SMblFn ` S ) ) |
| 15 |
|
0red |
|- ( ( ph /\ x e. X ) -> 0 e. RR ) |
| 16 |
4 15
|
dmmptd |
|- ( ph -> dom F = X ) |
| 17 |
1
|
eqcomi |
|- dom vol = S |
| 18 |
17
|
a1i |
|- ( ph -> dom vol = S ) |
| 19 |
16 18
|
eleq12d |
|- ( ph -> ( dom F e. dom vol <-> X e. S ) ) |
| 20 |
3 19
|
mtbird |
|- ( ph -> -. dom F e. dom vol ) |
| 21 |
|
mbfdm |
|- ( F e. MblFn -> dom F e. dom vol ) |
| 22 |
20 21
|
nsyl |
|- ( ph -> -. F e. MblFn ) |
| 23 |
14 22
|
jca |
|- ( ph -> ( F e. ( SMblFn ` S ) /\ -. F e. MblFn ) ) |