Step |
Hyp |
Ref |
Expression |
1 |
|
smfmbfcex.s |
|- S = dom vol |
2 |
|
smfmbfcex.x |
|- ( ph -> X C_ RR ) |
3 |
|
smfmbfcex.n |
|- ( ph -> -. X e. S ) |
4 |
|
smfmbfcex.f |
|- F = ( x e. X |-> 0 ) |
5 |
|
nfv |
|- F/ x ph |
6 |
|
dmvolsal |
|- dom vol e. SAlg |
7 |
1 6
|
eqeltri |
|- S e. SAlg |
8 |
7
|
a1i |
|- ( ph -> S e. SAlg ) |
9 |
1
|
unieqi |
|- U. S = U. dom vol |
10 |
|
unidmvol |
|- U. dom vol = RR |
11 |
9 10
|
eqtri |
|- U. S = RR |
12 |
2 11
|
sseqtrrdi |
|- ( ph -> X C_ U. S ) |
13 |
|
0red |
|- ( ph -> 0 e. RR ) |
14 |
5 8 12 13 4
|
smfconst |
|- ( ph -> F e. ( SMblFn ` S ) ) |
15 |
|
0red |
|- ( ( ph /\ x e. X ) -> 0 e. RR ) |
16 |
4 15
|
dmmptd |
|- ( ph -> dom F = X ) |
17 |
1
|
eqcomi |
|- dom vol = S |
18 |
17
|
a1i |
|- ( ph -> dom vol = S ) |
19 |
16 18
|
eleq12d |
|- ( ph -> ( dom F e. dom vol <-> X e. S ) ) |
20 |
3 19
|
mtbird |
|- ( ph -> -. dom F e. dom vol ) |
21 |
|
mbfdm |
|- ( F e. MblFn -> dom F e. dom vol ) |
22 |
20 21
|
nsyl |
|- ( ph -> -. F e. MblFn ) |
23 |
14 22
|
jca |
|- ( ph -> ( F e. ( SMblFn ` S ) /\ -. F e. MblFn ) ) |