Step |
Hyp |
Ref |
Expression |
1 |
|
smfpimltxrmptf.x |
|- F/ x ph |
2 |
|
smfpimltxrmptf.1 |
|- F/_ x A |
3 |
|
smfpimltxrmptf.s |
|- ( ph -> S e. SAlg ) |
4 |
|
smfpimltxrmptf.b |
|- ( ( ph /\ x e. A ) -> B e. V ) |
5 |
|
smfpimltxrmptf.f |
|- ( ph -> ( x e. A |-> B ) e. ( SMblFn ` S ) ) |
6 |
|
smfpimltxrmptf.r |
|- ( ph -> R e. RR* ) |
7 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> B ) |
8 |
7
|
nfdm |
|- F/_ x dom ( x e. A |-> B ) |
9 |
|
nfcv |
|- F/_ y dom ( x e. A |-> B ) |
10 |
|
nfv |
|- F/ y ( ( x e. A |-> B ) ` x ) < R |
11 |
|
nfcv |
|- F/_ x y |
12 |
7 11
|
nffv |
|- F/_ x ( ( x e. A |-> B ) ` y ) |
13 |
|
nfcv |
|- F/_ x < |
14 |
|
nfcv |
|- F/_ x R |
15 |
12 13 14
|
nfbr |
|- F/ x ( ( x e. A |-> B ) ` y ) < R |
16 |
|
fveq2 |
|- ( x = y -> ( ( x e. A |-> B ) ` x ) = ( ( x e. A |-> B ) ` y ) ) |
17 |
16
|
breq1d |
|- ( x = y -> ( ( ( x e. A |-> B ) ` x ) < R <-> ( ( x e. A |-> B ) ` y ) < R ) ) |
18 |
8 9 10 15 17
|
cbvrabw |
|- { x e. dom ( x e. A |-> B ) | ( ( x e. A |-> B ) ` x ) < R } = { y e. dom ( x e. A |-> B ) | ( ( x e. A |-> B ) ` y ) < R } |
19 |
18
|
a1i |
|- ( ph -> { x e. dom ( x e. A |-> B ) | ( ( x e. A |-> B ) ` x ) < R } = { y e. dom ( x e. A |-> B ) | ( ( x e. A |-> B ) ` y ) < R } ) |
20 |
|
nfcv |
|- F/_ y ( x e. A |-> B ) |
21 |
|
eqid |
|- dom ( x e. A |-> B ) = dom ( x e. A |-> B ) |
22 |
20 3 5 21 6
|
smfpimltxr |
|- ( ph -> { y e. dom ( x e. A |-> B ) | ( ( x e. A |-> B ) ` y ) < R } e. ( S |`t dom ( x e. A |-> B ) ) ) |
23 |
19 22
|
eqeltrd |
|- ( ph -> { x e. dom ( x e. A |-> B ) | ( ( x e. A |-> B ) ` x ) < R } e. ( S |`t dom ( x e. A |-> B ) ) ) |
24 |
|
eqid |
|- ( x e. A |-> B ) = ( x e. A |-> B ) |
25 |
1 2 24 4
|
dmmptdf2 |
|- ( ph -> dom ( x e. A |-> B ) = A ) |
26 |
8 2
|
rabeqf |
|- ( dom ( x e. A |-> B ) = A -> { x e. dom ( x e. A |-> B ) | ( ( x e. A |-> B ) ` x ) < R } = { x e. A | ( ( x e. A |-> B ) ` x ) < R } ) |
27 |
25 26
|
syl |
|- ( ph -> { x e. dom ( x e. A |-> B ) | ( ( x e. A |-> B ) ` x ) < R } = { x e. A | ( ( x e. A |-> B ) ` x ) < R } ) |
28 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
29 |
2
|
fvmpt2f |
|- ( ( x e. A /\ B e. V ) -> ( ( x e. A |-> B ) ` x ) = B ) |
30 |
28 4 29
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( ( x e. A |-> B ) ` x ) = B ) |
31 |
30
|
breq1d |
|- ( ( ph /\ x e. A ) -> ( ( ( x e. A |-> B ) ` x ) < R <-> B < R ) ) |
32 |
1 31
|
rabbida |
|- ( ph -> { x e. A | ( ( x e. A |-> B ) ` x ) < R } = { x e. A | B < R } ) |
33 |
|
eqidd |
|- ( ph -> { x e. A | B < R } = { x e. A | B < R } ) |
34 |
27 32 33
|
3eqtrrd |
|- ( ph -> { x e. A | B < R } = { x e. dom ( x e. A |-> B ) | ( ( x e. A |-> B ) ` x ) < R } ) |
35 |
25
|
eqcomd |
|- ( ph -> A = dom ( x e. A |-> B ) ) |
36 |
35
|
oveq2d |
|- ( ph -> ( S |`t A ) = ( S |`t dom ( x e. A |-> B ) ) ) |
37 |
34 36
|
eleq12d |
|- ( ph -> ( { x e. A | B < R } e. ( S |`t A ) <-> { x e. dom ( x e. A |-> B ) | ( ( x e. A |-> B ) ` x ) < R } e. ( S |`t dom ( x e. A |-> B ) ) ) ) |
38 |
23 37
|
mpbird |
|- ( ph -> { x e. A | B < R } e. ( S |`t A ) ) |