Step |
Hyp |
Ref |
Expression |
1 |
|
smfpimltxrmptf.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
smfpimltxrmptf.1 |
⊢ Ⅎ 𝑥 𝐴 |
3 |
|
smfpimltxrmptf.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
4 |
|
smfpimltxrmptf.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
5 |
|
smfpimltxrmptf.f |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
6 |
|
smfpimltxrmptf.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) |
7 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
8 |
7
|
nfdm |
⊢ Ⅎ 𝑥 dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
9 |
|
nfcv |
⊢ Ⅎ 𝑦 dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
10 |
|
nfv |
⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 |
11 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
12 |
7 11
|
nffv |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) |
13 |
|
nfcv |
⊢ Ⅎ 𝑥 < |
14 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑅 |
15 |
12 13 14
|
nfbr |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) < 𝑅 |
16 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) |
17 |
16
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) < 𝑅 ) ) |
18 |
8 9 10 15 17
|
cbvrabw |
⊢ { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 } = { 𝑦 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) < 𝑅 } |
19 |
18
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 } = { 𝑦 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) < 𝑅 } ) |
20 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
21 |
|
eqid |
⊢ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
22 |
20 3 5 21 6
|
smfpimltxr |
⊢ ( 𝜑 → { 𝑦 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) < 𝑅 } ∈ ( 𝑆 ↾t dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) |
23 |
19 22
|
eqeltrd |
⊢ ( 𝜑 → { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 } ∈ ( 𝑆 ↾t dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) |
24 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
25 |
1 2 24 4
|
dmmptdf2 |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
26 |
8 2
|
rabeqf |
⊢ ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 → { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 } = { 𝑥 ∈ 𝐴 ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 } ) |
27 |
25 26
|
syl |
⊢ ( 𝜑 → { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 } = { 𝑥 ∈ 𝐴 ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 } ) |
28 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
29 |
2
|
fvmpt2f |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
30 |
28 4 29
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
31 |
30
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 ↔ 𝐵 < 𝑅 ) ) |
32 |
1 31
|
rabbida |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 } = { 𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅 } ) |
33 |
|
eqidd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅 } = { 𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅 } ) |
34 |
27 32 33
|
3eqtrrd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅 } = { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 } ) |
35 |
25
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
36 |
35
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 ↾t 𝐴 ) = ( 𝑆 ↾t dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) |
37 |
34 36
|
eleq12d |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅 } ∈ ( 𝑆 ↾t 𝐴 ) ↔ { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 } ∈ ( 𝑆 ↾t dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) ) |
38 |
23 37
|
mpbird |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅 } ∈ ( 𝑆 ↾t 𝐴 ) ) |