| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfpimltxrmptf.x |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
smfpimltxrmptf.1 |
⊢ Ⅎ 𝑥 𝐴 |
| 3 |
|
smfpimltxrmptf.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 4 |
|
smfpimltxrmptf.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 5 |
|
smfpimltxrmptf.f |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 6 |
|
smfpimltxrmptf.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) |
| 7 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 8 |
7
|
nfdm |
⊢ Ⅎ 𝑥 dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 9 |
|
nfcv |
⊢ Ⅎ 𝑦 dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 10 |
|
nfv |
⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 |
| 11 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
| 12 |
7 11
|
nffv |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) |
| 13 |
|
nfcv |
⊢ Ⅎ 𝑥 < |
| 14 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑅 |
| 15 |
12 13 14
|
nfbr |
⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) < 𝑅 |
| 16 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) ) |
| 17 |
16
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) < 𝑅 ) ) |
| 18 |
8 9 10 15 17
|
cbvrabw |
⊢ { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 } = { 𝑦 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) < 𝑅 } |
| 19 |
18
|
a1i |
⊢ ( 𝜑 → { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 } = { 𝑦 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) < 𝑅 } ) |
| 20 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 21 |
|
eqid |
⊢ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 22 |
20 3 5 21 6
|
smfpimltxr |
⊢ ( 𝜑 → { 𝑦 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) < 𝑅 } ∈ ( 𝑆 ↾t dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) |
| 23 |
19 22
|
eqeltrd |
⊢ ( 𝜑 → { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 } ∈ ( 𝑆 ↾t dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) |
| 24 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 25 |
1 2 24 4
|
dmmptdf2 |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 26 |
8 2
|
rabeqf |
⊢ ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 → { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 } = { 𝑥 ∈ 𝐴 ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 } ) |
| 27 |
25 26
|
syl |
⊢ ( 𝜑 → { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 } = { 𝑥 ∈ 𝐴 ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 } ) |
| 28 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 29 |
2
|
fvmpt2f |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 30 |
28 4 29
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 31 |
30
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 ↔ 𝐵 < 𝑅 ) ) |
| 32 |
1 31
|
rabbida |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 } = { 𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅 } ) |
| 33 |
|
eqidd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅 } = { 𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅 } ) |
| 34 |
27 32 33
|
3eqtrrd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅 } = { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 } ) |
| 35 |
25
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 36 |
35
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 ↾t 𝐴 ) = ( 𝑆 ↾t dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) |
| 37 |
34 36
|
eleq12d |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅 } ∈ ( 𝑆 ↾t 𝐴 ) ↔ { 𝑥 ∈ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∣ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) < 𝑅 } ∈ ( 𝑆 ↾t dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) ) |
| 38 |
23 37
|
mpbird |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝐵 < 𝑅 } ∈ ( 𝑆 ↾t 𝐴 ) ) |