Metamath Proof Explorer


Theorem smfpimltxrmptf

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 20-Dec-2024)

Ref Expression
Hypotheses smfpimltxrmptf.x 𝑥 𝜑
smfpimltxrmptf.1 𝑥 𝐴
smfpimltxrmptf.s ( 𝜑𝑆 ∈ SAlg )
smfpimltxrmptf.b ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
smfpimltxrmptf.f ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )
smfpimltxrmptf.r ( 𝜑𝑅 ∈ ℝ* )
Assertion smfpimltxrmptf ( 𝜑 → { 𝑥𝐴𝐵 < 𝑅 } ∈ ( 𝑆t 𝐴 ) )

Proof

Step Hyp Ref Expression
1 smfpimltxrmptf.x 𝑥 𝜑
2 smfpimltxrmptf.1 𝑥 𝐴
3 smfpimltxrmptf.s ( 𝜑𝑆 ∈ SAlg )
4 smfpimltxrmptf.b ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
5 smfpimltxrmptf.f ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ( SMblFn ‘ 𝑆 ) )
6 smfpimltxrmptf.r ( 𝜑𝑅 ∈ ℝ* )
7 nfmpt1 𝑥 ( 𝑥𝐴𝐵 )
8 7 nfdm 𝑥 dom ( 𝑥𝐴𝐵 )
9 nfcv 𝑦 dom ( 𝑥𝐴𝐵 )
10 nfv 𝑦 ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) < 𝑅
11 nfcv 𝑥 𝑦
12 7 11 nffv 𝑥 ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 )
13 nfcv 𝑥 <
14 nfcv 𝑥 𝑅
15 12 13 14 nfbr 𝑥 ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) < 𝑅
16 fveq2 ( 𝑥 = 𝑦 → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) )
17 16 breq1d ( 𝑥 = 𝑦 → ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) < 𝑅 ↔ ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) < 𝑅 ) )
18 8 9 10 15 17 cbvrabw { 𝑥 ∈ dom ( 𝑥𝐴𝐵 ) ∣ ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) < 𝑅 } = { 𝑦 ∈ dom ( 𝑥𝐴𝐵 ) ∣ ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) < 𝑅 }
19 18 a1i ( 𝜑 → { 𝑥 ∈ dom ( 𝑥𝐴𝐵 ) ∣ ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) < 𝑅 } = { 𝑦 ∈ dom ( 𝑥𝐴𝐵 ) ∣ ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) < 𝑅 } )
20 nfcv 𝑦 ( 𝑥𝐴𝐵 )
21 eqid dom ( 𝑥𝐴𝐵 ) = dom ( 𝑥𝐴𝐵 )
22 20 3 5 21 6 smfpimltxr ( 𝜑 → { 𝑦 ∈ dom ( 𝑥𝐴𝐵 ) ∣ ( ( 𝑥𝐴𝐵 ) ‘ 𝑦 ) < 𝑅 } ∈ ( 𝑆t dom ( 𝑥𝐴𝐵 ) ) )
23 19 22 eqeltrd ( 𝜑 → { 𝑥 ∈ dom ( 𝑥𝐴𝐵 ) ∣ ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) < 𝑅 } ∈ ( 𝑆t dom ( 𝑥𝐴𝐵 ) ) )
24 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
25 1 2 24 4 dmmptdf2 ( 𝜑 → dom ( 𝑥𝐴𝐵 ) = 𝐴 )
26 8 2 rabeqf ( dom ( 𝑥𝐴𝐵 ) = 𝐴 → { 𝑥 ∈ dom ( 𝑥𝐴𝐵 ) ∣ ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) < 𝑅 } = { 𝑥𝐴 ∣ ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) < 𝑅 } )
27 25 26 syl ( 𝜑 → { 𝑥 ∈ dom ( 𝑥𝐴𝐵 ) ∣ ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) < 𝑅 } = { 𝑥𝐴 ∣ ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) < 𝑅 } )
28 simpr ( ( 𝜑𝑥𝐴 ) → 𝑥𝐴 )
29 2 fvmpt2f ( ( 𝑥𝐴𝐵𝑉 ) → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = 𝐵 )
30 28 4 29 syl2anc ( ( 𝜑𝑥𝐴 ) → ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) = 𝐵 )
31 30 breq1d ( ( 𝜑𝑥𝐴 ) → ( ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) < 𝑅𝐵 < 𝑅 ) )
32 1 31 rabbida ( 𝜑 → { 𝑥𝐴 ∣ ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) < 𝑅 } = { 𝑥𝐴𝐵 < 𝑅 } )
33 eqidd ( 𝜑 → { 𝑥𝐴𝐵 < 𝑅 } = { 𝑥𝐴𝐵 < 𝑅 } )
34 27 32 33 3eqtrrd ( 𝜑 → { 𝑥𝐴𝐵 < 𝑅 } = { 𝑥 ∈ dom ( 𝑥𝐴𝐵 ) ∣ ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) < 𝑅 } )
35 25 eqcomd ( 𝜑𝐴 = dom ( 𝑥𝐴𝐵 ) )
36 35 oveq2d ( 𝜑 → ( 𝑆t 𝐴 ) = ( 𝑆t dom ( 𝑥𝐴𝐵 ) ) )
37 34 36 eleq12d ( 𝜑 → ( { 𝑥𝐴𝐵 < 𝑅 } ∈ ( 𝑆t 𝐴 ) ↔ { 𝑥 ∈ dom ( 𝑥𝐴𝐵 ) ∣ ( ( 𝑥𝐴𝐵 ) ‘ 𝑥 ) < 𝑅 } ∈ ( 𝑆t dom ( 𝑥𝐴𝐵 ) ) ) )
38 23 37 mpbird ( 𝜑 → { 𝑥𝐴𝐵 < 𝑅 } ∈ ( 𝑆t 𝐴 ) )