Metamath Proof Explorer


Theorem smfpimltxrmptf

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 20-Dec-2024)

Ref Expression
Hypotheses smfpimltxrmptf.x x φ
smfpimltxrmptf.1 _ x A
smfpimltxrmptf.s φ S SAlg
smfpimltxrmptf.b φ x A B V
smfpimltxrmptf.f φ x A B SMblFn S
smfpimltxrmptf.r φ R *
Assertion smfpimltxrmptf φ x A | B < R S 𝑡 A

Proof

Step Hyp Ref Expression
1 smfpimltxrmptf.x x φ
2 smfpimltxrmptf.1 _ x A
3 smfpimltxrmptf.s φ S SAlg
4 smfpimltxrmptf.b φ x A B V
5 smfpimltxrmptf.f φ x A B SMblFn S
6 smfpimltxrmptf.r φ R *
7 nfmpt1 _ x x A B
8 7 nfdm _ x dom x A B
9 nfcv _ y dom x A B
10 nfv y x A B x < R
11 nfcv _ x y
12 7 11 nffv _ x x A B y
13 nfcv _ x <
14 nfcv _ x R
15 12 13 14 nfbr x x A B y < R
16 fveq2 x = y x A B x = x A B y
17 16 breq1d x = y x A B x < R x A B y < R
18 8 9 10 15 17 cbvrabw x dom x A B | x A B x < R = y dom x A B | x A B y < R
19 18 a1i φ x dom x A B | x A B x < R = y dom x A B | x A B y < R
20 nfcv _ y x A B
21 eqid dom x A B = dom x A B
22 20 3 5 21 6 smfpimltxr φ y dom x A B | x A B y < R S 𝑡 dom x A B
23 19 22 eqeltrd φ x dom x A B | x A B x < R S 𝑡 dom x A B
24 eqid x A B = x A B
25 1 2 24 4 dmmptdf2 φ dom x A B = A
26 8 2 rabeqf dom x A B = A x dom x A B | x A B x < R = x A | x A B x < R
27 25 26 syl φ x dom x A B | x A B x < R = x A | x A B x < R
28 simpr φ x A x A
29 2 fvmpt2f x A B V x A B x = B
30 28 4 29 syl2anc φ x A x A B x = B
31 30 breq1d φ x A x A B x < R B < R
32 1 31 rabbida φ x A | x A B x < R = x A | B < R
33 eqidd φ x A | B < R = x A | B < R
34 27 32 33 3eqtrrd φ x A | B < R = x dom x A B | x A B x < R
35 25 eqcomd φ A = dom x A B
36 35 oveq2d φ S 𝑡 A = S 𝑡 dom x A B
37 34 36 eleq12d φ x A | B < R S 𝑡 A x dom x A B | x A B x < R S 𝑡 dom x A B
38 23 37 mpbird φ x A | B < R S 𝑡 A