| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfpimgtxrmptf.x | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | smfpimgtxrmptf.1 | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 3 |  | smfpimgtxrmptf.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 4 |  | smfpimgtxrmptf.b | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑉 ) | 
						
							| 5 |  | smfpimgtxrmptf.f | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 6 |  | smfpimgtxrmptf.l | ⊢ ( 𝜑  →  𝐿  ∈  ℝ* ) | 
						
							| 7 |  | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 8 | 7 | nfdm | ⊢ Ⅎ 𝑥 dom  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑦 dom  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 10 |  | nfv | ⊢ Ⅎ 𝑦 𝐿  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) | 
						
							| 11 |  | nfcv | ⊢ Ⅎ 𝑥 𝐿 | 
						
							| 12 |  | nfcv | ⊢ Ⅎ 𝑥  < | 
						
							| 13 |  | nfcv | ⊢ Ⅎ 𝑥 𝑦 | 
						
							| 14 | 7 13 | nffv | ⊢ Ⅎ 𝑥 ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) | 
						
							| 15 | 11 12 14 | nfbr | ⊢ Ⅎ 𝑥 𝐿  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  =  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ) | 
						
							| 17 | 16 | breq2d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐿  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  ↔  𝐿  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) ) ) | 
						
							| 18 | 8 9 10 15 17 | cbvrabw | ⊢ { 𝑥  ∈  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∣  𝐿  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) }  =  { 𝑦  ∈  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∣  𝐿  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) } | 
						
							| 19 | 18 | a1i | ⊢ ( 𝜑  →  { 𝑥  ∈  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∣  𝐿  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) }  =  { 𝑦  ∈  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∣  𝐿  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) } ) | 
						
							| 20 |  | nfcv | ⊢ Ⅎ 𝑦 ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 21 |  | eqid | ⊢ dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 22 | 20 3 5 21 6 | smfpimgtxr | ⊢ ( 𝜑  →  { 𝑦  ∈  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∣  𝐿  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑦 ) }  ∈  ( 𝑆  ↾t  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ) | 
						
							| 23 | 19 22 | eqeltrd | ⊢ ( 𝜑  →  { 𝑥  ∈  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∣  𝐿  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ) | 
						
							| 24 |  | eqid | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 ) | 
						
							| 25 | 1 2 24 4 | dmmptdf2 | ⊢ ( 𝜑  →  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  𝐴 ) | 
						
							| 26 | 8 2 | rabeqf | ⊢ ( dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  𝐴  →  { 𝑥  ∈  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∣  𝐿  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) }  =  { 𝑥  ∈  𝐴  ∣  𝐿  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) } ) | 
						
							| 27 | 25 26 | syl | ⊢ ( 𝜑  →  { 𝑥  ∈  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∣  𝐿  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) }  =  { 𝑥  ∈  𝐴  ∣  𝐿  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) } ) | 
						
							| 28 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐴 ) | 
						
							| 29 | 2 | fvmpt2f | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝐵  ∈  𝑉 )  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  =  𝐵 ) | 
						
							| 30 | 28 4 29 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  =  𝐵 ) | 
						
							| 31 | 30 | breq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐿  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 )  ↔  𝐿  <  𝐵 ) ) | 
						
							| 32 | 1 31 | rabbida | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐴  ∣  𝐿  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) }  =  { 𝑥  ∈  𝐴  ∣  𝐿  <  𝐵 } ) | 
						
							| 33 |  | eqidd | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐴  ∣  𝐿  <  𝐵 }  =  { 𝑥  ∈  𝐴  ∣  𝐿  <  𝐵 } ) | 
						
							| 34 | 27 32 33 | 3eqtrrd | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐴  ∣  𝐿  <  𝐵 }  =  { 𝑥  ∈  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∣  𝐿  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) } ) | 
						
							| 35 | 25 | eqcomd | ⊢ ( 𝜑  →  𝐴  =  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) | 
						
							| 36 | 35 | oveq2d | ⊢ ( 𝜑  →  ( 𝑆  ↾t  𝐴 )  =  ( 𝑆  ↾t  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ) | 
						
							| 37 | 34 36 | eleq12d | ⊢ ( 𝜑  →  ( { 𝑥  ∈  𝐴  ∣  𝐿  <  𝐵 }  ∈  ( 𝑆  ↾t  𝐴 )  ↔  { 𝑥  ∈  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∣  𝐿  <  ( ( 𝑥  ∈  𝐴  ↦  𝐵 ) ‘ 𝑥 ) }  ∈  ( 𝑆  ↾t  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ) ) ) | 
						
							| 38 | 23 37 | mpbird | ⊢ ( 𝜑  →  { 𝑥  ∈  𝐴  ∣  𝐿  <  𝐵 }  ∈  ( 𝑆  ↾t  𝐴 ) ) |