Step |
Hyp |
Ref |
Expression |
1 |
|
mbfpsssmf.1 |
⊢ 𝑆 = dom vol |
2 |
|
elinel1 |
⊢ ( 𝑓 ∈ ( MblFn ∩ ( ℝ ↑pm ℝ ) ) → 𝑓 ∈ MblFn ) |
3 |
|
elinel2 |
⊢ ( 𝑓 ∈ ( MblFn ∩ ( ℝ ↑pm ℝ ) ) → 𝑓 ∈ ( ℝ ↑pm ℝ ) ) |
4 |
|
elpmrn |
⊢ ( 𝑓 ∈ ( ℝ ↑pm ℝ ) → ran 𝑓 ⊆ ℝ ) |
5 |
3 4
|
syl |
⊢ ( 𝑓 ∈ ( MblFn ∩ ( ℝ ↑pm ℝ ) ) → ran 𝑓 ⊆ ℝ ) |
6 |
2 5 1
|
mbfresmf |
⊢ ( 𝑓 ∈ ( MblFn ∩ ( ℝ ↑pm ℝ ) ) → 𝑓 ∈ ( SMblFn ‘ 𝑆 ) ) |
7 |
6
|
ssriv |
⊢ ( MblFn ∩ ( ℝ ↑pm ℝ ) ) ⊆ ( SMblFn ‘ 𝑆 ) |
8 |
1
|
nsssmfmbf |
⊢ ¬ ( SMblFn ‘ 𝑆 ) ⊆ MblFn |
9 |
2
|
ssriv |
⊢ ( MblFn ∩ ( ℝ ↑pm ℝ ) ) ⊆ MblFn |
10 |
|
nsstr |
⊢ ( ( ¬ ( SMblFn ‘ 𝑆 ) ⊆ MblFn ∧ ( MblFn ∩ ( ℝ ↑pm ℝ ) ) ⊆ MblFn ) → ¬ ( SMblFn ‘ 𝑆 ) ⊆ ( MblFn ∩ ( ℝ ↑pm ℝ ) ) ) |
11 |
8 9 10
|
mp2an |
⊢ ¬ ( SMblFn ‘ 𝑆 ) ⊆ ( MblFn ∩ ( ℝ ↑pm ℝ ) ) |
12 |
7 11
|
pm3.2i |
⊢ ( ( MblFn ∩ ( ℝ ↑pm ℝ ) ) ⊆ ( SMblFn ‘ 𝑆 ) ∧ ¬ ( SMblFn ‘ 𝑆 ) ⊆ ( MblFn ∩ ( ℝ ↑pm ℝ ) ) ) |
13 |
|
dfpss3 |
⊢ ( ( MblFn ∩ ( ℝ ↑pm ℝ ) ) ⊊ ( SMblFn ‘ 𝑆 ) ↔ ( ( MblFn ∩ ( ℝ ↑pm ℝ ) ) ⊆ ( SMblFn ‘ 𝑆 ) ∧ ¬ ( SMblFn ‘ 𝑆 ) ⊆ ( MblFn ∩ ( ℝ ↑pm ℝ ) ) ) ) |
14 |
12 13
|
mpbir |
⊢ ( MblFn ∩ ( ℝ ↑pm ℝ ) ) ⊊ ( SMblFn ‘ 𝑆 ) |