| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mbfpsssmf.1 | ⊢ 𝑆  =  dom  vol | 
						
							| 2 |  | elinel1 | ⊢ ( 𝑓  ∈  ( MblFn  ∩  ( ℝ  ↑pm  ℝ ) )  →  𝑓  ∈  MblFn ) | 
						
							| 3 |  | elinel2 | ⊢ ( 𝑓  ∈  ( MblFn  ∩  ( ℝ  ↑pm  ℝ ) )  →  𝑓  ∈  ( ℝ  ↑pm  ℝ ) ) | 
						
							| 4 |  | elpmrn | ⊢ ( 𝑓  ∈  ( ℝ  ↑pm  ℝ )  →  ran  𝑓  ⊆  ℝ ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝑓  ∈  ( MblFn  ∩  ( ℝ  ↑pm  ℝ ) )  →  ran  𝑓  ⊆  ℝ ) | 
						
							| 6 | 2 5 1 | mbfresmf | ⊢ ( 𝑓  ∈  ( MblFn  ∩  ( ℝ  ↑pm  ℝ ) )  →  𝑓  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 7 | 6 | ssriv | ⊢ ( MblFn  ∩  ( ℝ  ↑pm  ℝ ) )  ⊆  ( SMblFn ‘ 𝑆 ) | 
						
							| 8 | 1 | nsssmfmbf | ⊢ ¬  ( SMblFn ‘ 𝑆 )  ⊆  MblFn | 
						
							| 9 | 2 | ssriv | ⊢ ( MblFn  ∩  ( ℝ  ↑pm  ℝ ) )  ⊆  MblFn | 
						
							| 10 |  | nsstr | ⊢ ( ( ¬  ( SMblFn ‘ 𝑆 )  ⊆  MblFn  ∧  ( MblFn  ∩  ( ℝ  ↑pm  ℝ ) )  ⊆  MblFn )  →  ¬  ( SMblFn ‘ 𝑆 )  ⊆  ( MblFn  ∩  ( ℝ  ↑pm  ℝ ) ) ) | 
						
							| 11 | 8 9 10 | mp2an | ⊢ ¬  ( SMblFn ‘ 𝑆 )  ⊆  ( MblFn  ∩  ( ℝ  ↑pm  ℝ ) ) | 
						
							| 12 | 7 11 | pm3.2i | ⊢ ( ( MblFn  ∩  ( ℝ  ↑pm  ℝ ) )  ⊆  ( SMblFn ‘ 𝑆 )  ∧  ¬  ( SMblFn ‘ 𝑆 )  ⊆  ( MblFn  ∩  ( ℝ  ↑pm  ℝ ) ) ) | 
						
							| 13 |  | dfpss3 | ⊢ ( ( MblFn  ∩  ( ℝ  ↑pm  ℝ ) )  ⊊  ( SMblFn ‘ 𝑆 )  ↔  ( ( MblFn  ∩  ( ℝ  ↑pm  ℝ ) )  ⊆  ( SMblFn ‘ 𝑆 )  ∧  ¬  ( SMblFn ‘ 𝑆 )  ⊆  ( MblFn  ∩  ( ℝ  ↑pm  ℝ ) ) ) ) | 
						
							| 14 | 12 13 | mpbir | ⊢ ( MblFn  ∩  ( ℝ  ↑pm  ℝ ) )  ⊊  ( SMblFn ‘ 𝑆 ) |