Metamath Proof Explorer


Theorem mbfpsssmf

Description: Real-valued measurable functions are a proper subset of sigma-measurable functions (w.r.t. the Lebesgue measure on the reals). (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis mbfpsssmf.1 𝑆 = dom vol
Assertion mbfpsssmf ( MblFn ∩ ( ℝ ↑pm ℝ ) ) ⊊ ( SMblFn ‘ 𝑆 )

Proof

Step Hyp Ref Expression
1 mbfpsssmf.1 𝑆 = dom vol
2 elinel1 ( 𝑓 ∈ ( MblFn ∩ ( ℝ ↑pm ℝ ) ) → 𝑓 ∈ MblFn )
3 elinel2 ( 𝑓 ∈ ( MblFn ∩ ( ℝ ↑pm ℝ ) ) → 𝑓 ∈ ( ℝ ↑pm ℝ ) )
4 elpmrn ( 𝑓 ∈ ( ℝ ↑pm ℝ ) → ran 𝑓 ⊆ ℝ )
5 3 4 syl ( 𝑓 ∈ ( MblFn ∩ ( ℝ ↑pm ℝ ) ) → ran 𝑓 ⊆ ℝ )
6 2 5 1 mbfresmf ( 𝑓 ∈ ( MblFn ∩ ( ℝ ↑pm ℝ ) ) → 𝑓 ∈ ( SMblFn ‘ 𝑆 ) )
7 6 ssriv ( MblFn ∩ ( ℝ ↑pm ℝ ) ) ⊆ ( SMblFn ‘ 𝑆 )
8 1 nsssmfmbf ¬ ( SMblFn ‘ 𝑆 ) ⊆ MblFn
9 2 ssriv ( MblFn ∩ ( ℝ ↑pm ℝ ) ) ⊆ MblFn
10 nsstr ( ( ¬ ( SMblFn ‘ 𝑆 ) ⊆ MblFn ∧ ( MblFn ∩ ( ℝ ↑pm ℝ ) ) ⊆ MblFn ) → ¬ ( SMblFn ‘ 𝑆 ) ⊆ ( MblFn ∩ ( ℝ ↑pm ℝ ) ) )
11 8 9 10 mp2an ¬ ( SMblFn ‘ 𝑆 ) ⊆ ( MblFn ∩ ( ℝ ↑pm ℝ ) )
12 7 11 pm3.2i ( ( MblFn ∩ ( ℝ ↑pm ℝ ) ) ⊆ ( SMblFn ‘ 𝑆 ) ∧ ¬ ( SMblFn ‘ 𝑆 ) ⊆ ( MblFn ∩ ( ℝ ↑pm ℝ ) ) )
13 dfpss3 ( ( MblFn ∩ ( ℝ ↑pm ℝ ) ) ⊊ ( SMblFn ‘ 𝑆 ) ↔ ( ( MblFn ∩ ( ℝ ↑pm ℝ ) ) ⊆ ( SMblFn ‘ 𝑆 ) ∧ ¬ ( SMblFn ‘ 𝑆 ) ⊆ ( MblFn ∩ ( ℝ ↑pm ℝ ) ) ) )
14 12 13 mpbir ( MblFn ∩ ( ℝ ↑pm ℝ ) ) ⊊ ( SMblFn ‘ 𝑆 )