Metamath Proof Explorer


Theorem nsstr

Description: If it's not a subclass, it's not a subclass of a smaller one. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Assertion nsstr ¬ABCB¬AC

Proof

Step Hyp Ref Expression
1 sstr ACCBAB
2 1 ancoms CBACAB
3 2 adantll ¬ABCBACAB
4 simpll ¬ABCBAC¬AB
5 3 4 pm2.65da ¬ABCB¬AC