Metamath Proof Explorer


Theorem smfpimgtxr

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpimgtxr.x _ x F
smfpimgtxr.s φ S SAlg
smfpimgtxr.f φ F SMblFn S
smfpimgtxr.d D = dom F
smfpimgtxr.a φ A *
Assertion smfpimgtxr φ x D | A < F x S 𝑡 D

Proof

Step Hyp Ref Expression
1 smfpimgtxr.x _ x F
2 smfpimgtxr.s φ S SAlg
3 smfpimgtxr.f φ F SMblFn S
4 smfpimgtxr.d D = dom F
5 smfpimgtxr.a φ A *
6 breq1 A = −∞ A < F x −∞ < F x
7 6 rabbidv A = −∞ x D | A < F x = x D | −∞ < F x
8 7 adantl φ A = −∞ x D | A < F x = x D | −∞ < F x
9 1 nfdm _ x dom F
10 4 9 nfcxfr _ x D
11 nfcv _ y D
12 nfv y −∞ < F x
13 nfcv _ x −∞
14 nfcv _ x <
15 nfcv _ x y
16 1 15 nffv _ x F y
17 13 14 16 nfbr x −∞ < F y
18 fveq2 x = y F x = F y
19 18 breq2d x = y −∞ < F x −∞ < F y
20 10 11 12 17 19 cbvrabw x D | −∞ < F x = y D | −∞ < F y
21 20 a1i φ x D | −∞ < F x = y D | −∞ < F y
22 nfv y φ
23 2 3 4 smff φ F : D
24 23 adantr φ y D F : D
25 simpr φ y D y D
26 24 25 ffvelrnd φ y D F y
27 22 26 pimgtmnf φ y D | −∞ < F y = D
28 eqidd φ D = D
29 21 27 28 3eqtrd φ x D | −∞ < F x = D
30 29 adantr φ A = −∞ x D | −∞ < F x = D
31 8 30 eqtrd φ A = −∞ x D | A < F x = D
32 2 3 4 smfdmss φ D S
33 2 32 restuni4 φ S 𝑡 D = D
34 33 eqcomd φ D = S 𝑡 D
35 3 dmexd φ dom F V
36 4 35 eqeltrid φ D V
37 eqid S 𝑡 D = S 𝑡 D
38 2 36 37 subsalsal φ S 𝑡 D SAlg
39 38 salunid φ S 𝑡 D S 𝑡 D
40 34 39 eqeltrd φ D S 𝑡 D
41 40 adantr φ A = −∞ D S 𝑡 D
42 31 41 eqeltrd φ A = −∞ x D | A < F x S 𝑡 D
43 neqne ¬ A = −∞ A −∞
44 43 adantl φ ¬ A = −∞ A −∞
45 breq1 A = +∞ A < F x +∞ < F x
46 45 rabbidv A = +∞ x D | A < F x = x D | +∞ < F x
47 46 adantl φ A = +∞ x D | A < F x = x D | +∞ < F x
48 1 23 pimgtpnf2 φ x D | +∞ < F x =
49 48 adantr φ A = +∞ x D | +∞ < F x =
50 47 49 eqtrd φ A = +∞ x D | A < F x =
51 38 0sald φ S 𝑡 D
52 51 adantr φ A = +∞ S 𝑡 D
53 50 52 eqeltrd φ A = +∞ x D | A < F x S 𝑡 D
54 53 adantlr φ A −∞ A = +∞ x D | A < F x S 𝑡 D
55 simpll φ A −∞ ¬ A = +∞ φ
56 55 5 syl φ A −∞ ¬ A = +∞ A *
57 simplr φ A −∞ ¬ A = +∞ A −∞
58 neqne ¬ A = +∞ A +∞
59 58 adantl φ A −∞ ¬ A = +∞ A +∞
60 56 57 59 xrred φ A −∞ ¬ A = +∞ A
61 2 adantr φ A S SAlg
62 3 adantr φ A F SMblFn S
63 simpr φ A A
64 1 61 62 4 63 smfpreimagtf φ A x D | A < F x S 𝑡 D
65 55 60 64 syl2anc φ A −∞ ¬ A = +∞ x D | A < F x S 𝑡 D
66 54 65 pm2.61dan φ A −∞ x D | A < F x S 𝑡 D
67 44 66 syldan φ ¬ A = −∞ x D | A < F x S 𝑡 D
68 42 67 pm2.61dan φ x D | A < F x S 𝑡 D