Metamath Proof Explorer


Theorem smfpimgtxr

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021) (Revised by Glauco Siliprandi, 15-Dec-2024)

Ref Expression
Hypotheses smfpimgtxr.x _ x F
smfpimgtxr.s φ S SAlg
smfpimgtxr.f φ F SMblFn S
smfpimgtxr.d D = dom F
smfpimgtxr.a φ A *
Assertion smfpimgtxr φ x D | A < F x S 𝑡 D

Proof

Step Hyp Ref Expression
1 smfpimgtxr.x _ x F
2 smfpimgtxr.s φ S SAlg
3 smfpimgtxr.f φ F SMblFn S
4 smfpimgtxr.d D = dom F
5 smfpimgtxr.a φ A *
6 breq1 A = −∞ A < F x −∞ < F x
7 6 rabbidv A = −∞ x D | A < F x = x D | −∞ < F x
8 1 nfdm _ x dom F
9 4 8 nfcxfr _ x D
10 nfcv _ y D
11 nfv y −∞ < F x
12 nfcv _ x −∞
13 nfcv _ x <
14 nfcv _ x y
15 1 14 nffv _ x F y
16 12 13 15 nfbr x −∞ < F y
17 fveq2 x = y F x = F y
18 17 breq2d x = y −∞ < F x −∞ < F y
19 9 10 11 16 18 cbvrabw x D | −∞ < F x = y D | −∞ < F y
20 nfv y φ
21 2 3 4 smff φ F : D
22 21 ffvelcdmda φ y D F y
23 20 22 pimgtmnf φ y D | −∞ < F y = D
24 19 23 eqtrid φ x D | −∞ < F x = D
25 7 24 sylan9eqr φ A = −∞ x D | A < F x = D
26 2 3 4 smfdmss φ D S
27 2 26 subsaluni φ D S 𝑡 D
28 27 adantr φ A = −∞ D S 𝑡 D
29 25 28 eqeltrd φ A = −∞ x D | A < F x S 𝑡 D
30 breq1 A = +∞ A < F x +∞ < F x
31 30 rabbidv A = +∞ x D | A < F x = x D | +∞ < F x
32 1 9 21 pimgtpnf2f φ x D | +∞ < F x =
33 31 32 sylan9eqr φ A = +∞ x D | A < F x =
34 3 dmexd φ dom F V
35 4 34 eqeltrid φ D V
36 eqid S 𝑡 D = S 𝑡 D
37 2 35 36 subsalsal φ S 𝑡 D SAlg
38 37 0sald φ S 𝑡 D
39 38 adantr φ A = +∞ S 𝑡 D
40 33 39 eqeltrd φ A = +∞ x D | A < F x S 𝑡 D
41 40 adantlr φ A −∞ A = +∞ x D | A < F x S 𝑡 D
42 simpll φ A −∞ ¬ A = +∞ φ
43 42 5 syl φ A −∞ ¬ A = +∞ A *
44 simplr φ A −∞ ¬ A = +∞ A −∞
45 neqne ¬ A = +∞ A +∞
46 45 adantl φ A −∞ ¬ A = +∞ A +∞
47 43 44 46 xrred φ A −∞ ¬ A = +∞ A
48 2 adantr φ A S SAlg
49 3 adantr φ A F SMblFn S
50 simpr φ A A
51 1 48 49 4 50 smfpreimagtf φ A x D | A < F x S 𝑡 D
52 42 47 51 syl2anc φ A −∞ ¬ A = +∞ x D | A < F x S 𝑡 D
53 41 52 pm2.61dan φ A −∞ x D | A < F x S 𝑡 D
54 29 53 pm2.61dane φ x D | A < F x S 𝑡 D