Metamath Proof Explorer


Theorem nsssmfmbflem

Description: The sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) are not a subset of the measurable functions. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses nsssmfmbflem.s S=domvol
nsssmfmbflem.x φX
nsssmfmbflem.n φ¬XS
nsssmfmbflem.f F=xX0
Assertion nsssmfmbflem φffSMblFnS¬fMblFn

Proof

Step Hyp Ref Expression
1 nsssmfmbflem.s S=domvol
2 nsssmfmbflem.x φX
3 nsssmfmbflem.n φ¬XS
4 nsssmfmbflem.f F=xX0
5 0red φxX0
6 5 4 fmptd φF:X
7 reex V
8 7 a1i φV
9 8 2 ssexd φXV
10 6 9 fexd φFV
11 1 2 3 4 smfmbfcex φFSMblFnS¬FMblFn
12 eleq1 f=FfSMblFnSFSMblFnS
13 eleq1 f=FfMblFnFMblFn
14 13 notbid f=F¬fMblFn¬FMblFn
15 12 14 anbi12d f=FfSMblFnS¬fMblFnFSMblFnS¬FMblFn
16 15 spcegv FVFSMblFnS¬FMblFnffSMblFnS¬fMblFn
17 10 11 16 sylc φffSMblFnS¬fMblFn