Metamath Proof Explorer


Theorem nsssmfmbflem

Description: The sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) are not a subset of the measurable functions. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses nsssmfmbflem.s S = dom vol
nsssmfmbflem.x φ X
nsssmfmbflem.n φ ¬ X S
nsssmfmbflem.f F = x X 0
Assertion nsssmfmbflem φ f f SMblFn S ¬ f MblFn

Proof

Step Hyp Ref Expression
1 nsssmfmbflem.s S = dom vol
2 nsssmfmbflem.x φ X
3 nsssmfmbflem.n φ ¬ X S
4 nsssmfmbflem.f F = x X 0
5 0red φ x X 0
6 5 4 fmptd φ F : X
7 reex V
8 7 a1i φ V
9 8 2 ssexd φ X V
10 6 9 fexd φ F V
11 1 2 3 4 smfmbfcex φ F SMblFn S ¬ F MblFn
12 eleq1 f = F f SMblFn S F SMblFn S
13 eleq1 f = F f MblFn F MblFn
14 13 notbid f = F ¬ f MblFn ¬ F MblFn
15 12 14 anbi12d f = F f SMblFn S ¬ f MblFn F SMblFn S ¬ F MblFn
16 15 spcegv F V F SMblFn S ¬ F MblFn f f SMblFn S ¬ f MblFn
17 10 11 16 sylc φ f f SMblFn S ¬ f MblFn