Description: The sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) are not a subset of the measurable functions. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nsssmfmbflem.s | |
|
nsssmfmbflem.x | |
||
nsssmfmbflem.n | |
||
nsssmfmbflem.f | |
||
Assertion | nsssmfmbflem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsssmfmbflem.s | |
|
2 | nsssmfmbflem.x | |
|
3 | nsssmfmbflem.n | |
|
4 | nsssmfmbflem.f | |
|
5 | 0red | |
|
6 | 5 4 | fmptd | |
7 | reex | |
|
8 | 7 | a1i | |
9 | 8 2 | ssexd | |
10 | 6 9 | fexd | |
11 | 1 2 3 4 | smfmbfcex | |
12 | eleq1 | |
|
13 | eleq1 | |
|
14 | 13 | notbid | |
15 | 12 14 | anbi12d | |
16 | 15 | spcegv | |
17 | 10 11 16 | sylc | |