Description: The limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of Fremlin1 p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of Fremlin1 p. 39 ). TODO: this has fewer distinct variable conditions than smflim and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smflim2.n | |
|
smflim2.x | |
||
smflim2.m | |
||
smflim2.z | |
||
smflim2.s | |
||
smflim2.f | |
||
smflim2.d | |
||
smflim2.g | |
||
Assertion | smflim2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smflim2.n | |
|
2 | smflim2.x | |
|
3 | smflim2.m | |
|
4 | smflim2.z | |
|
5 | smflim2.s | |
|
6 | smflim2.f | |
|
7 | smflim2.d | |
|
8 | smflim2.g | |
|
9 | nfcv | |
|
10 | nfcv | |
|
11 | nfcv | |
|
12 | nfcv | |
|
13 | nfcv | |
|
14 | 2 13 | nffv | |
15 | 14 | nfdm | |
16 | 12 15 | nfiin | |
17 | 11 16 | nfiun | |
18 | nfcv | |
|
19 | nfv | |
|
20 | nfcv | |
|
21 | nfcv | |
|
22 | 1 21 | nffv | |
23 | nfcv | |
|
24 | 22 23 | nffv | |
25 | fveq2 | |
|
26 | 25 | fveq1d | |
27 | 20 24 26 | cbvmpt | |
28 | nfcv | |
|
29 | 2 28 | nffv | |
30 | nfcv | |
|
31 | 29 30 | nffv | |
32 | 11 31 | nfmpt | |
33 | 27 32 | nfcxfr | |
34 | nfcv | |
|
35 | 33 34 | nfel | |
36 | fveq2 | |
|
37 | 36 | mpteq2dv | |
38 | 37 | eleq1d | |
39 | 17 18 19 35 38 | cbvrabw | |
40 | fveq2 | |
|
41 | 40 | iineq1d | |
42 | nfcv | |
|
43 | 22 | nfdm | |
44 | 25 | dmeqd | |
45 | 42 43 44 | cbviin | |
46 | 45 | a1i | |
47 | 41 46 | eqtrd | |
48 | 47 | cbviunv | |
49 | 48 | eleq2i | |
50 | 27 | eleq1i | |
51 | 49 50 | anbi12i | |
52 | 51 | rabbia2 | |
53 | 7 39 52 | 3eqtri | |
54 | nfrab1 | |
|
55 | 7 54 | nfcxfr | |
56 | nfcv | |
|
57 | nfcv | |
|
58 | nfcv | |
|
59 | 58 32 | nffv | |
60 | 27 | a1i | |
61 | 37 60 | eqtrd | |
62 | 61 | fveq2d | |
63 | 55 56 57 59 62 | cbvmptf | |
64 | 8 63 | eqtri | |
65 | 9 10 3 4 5 6 53 64 | smflim | |