Metamath Proof Explorer


Theorem smflim2

Description: The limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of Fremlin1 p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of Fremlin1 p. 39 ). TODO: this has fewer distinct variable conditions than smflim and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smflim2.n _mF
smflim2.x _xF
smflim2.m φM
smflim2.z Z=M
smflim2.s φSSAlg
smflim2.f φF:ZSMblFnS
smflim2.d D=xnZmndomFm|mZFmxdom
smflim2.g G=xDmZFmx
Assertion smflim2 φGSMblFnS

Proof

Step Hyp Ref Expression
1 smflim2.n _mF
2 smflim2.x _xF
3 smflim2.m φM
4 smflim2.z Z=M
5 smflim2.s φSSAlg
6 smflim2.f φF:ZSMblFnS
7 smflim2.d D=xnZmndomFm|mZFmxdom
8 smflim2.g G=xDmZFmx
9 nfcv _jF
10 nfcv _yF
11 nfcv _xZ
12 nfcv _xn
13 nfcv _xm
14 2 13 nffv _xFm
15 14 nfdm _xdomFm
16 12 15 nfiin _xmndomFm
17 11 16 nfiun _xnZmndomFm
18 nfcv _ynZmndomFm
19 nfv ymZFmxdom
20 nfcv _jFmy
21 nfcv _mj
22 1 21 nffv _mFj
23 nfcv _my
24 22 23 nffv _mFjy
25 fveq2 m=jFm=Fj
26 25 fveq1d m=jFmy=Fjy
27 20 24 26 cbvmpt mZFmy=jZFjy
28 nfcv _xj
29 2 28 nffv _xFj
30 nfcv _xy
31 29 30 nffv _xFjy
32 11 31 nfmpt _xjZFjy
33 27 32 nfcxfr _xmZFmy
34 nfcv _xdom
35 33 34 nfel xmZFmydom
36 fveq2 x=yFmx=Fmy
37 36 mpteq2dv x=ymZFmx=mZFmy
38 37 eleq1d x=ymZFmxdommZFmydom
39 17 18 19 35 38 cbvrabw xnZmndomFm|mZFmxdom=ynZmndomFm|mZFmydom
40 fveq2 n=kn=k
41 40 iineq1d n=kmndomFm=mkdomFm
42 nfcv _jdomFm
43 22 nfdm _mdomFj
44 25 dmeqd m=jdomFm=domFj
45 42 43 44 cbviin mkdomFm=jkdomFj
46 45 a1i n=kmkdomFm=jkdomFj
47 41 46 eqtrd n=kmndomFm=jkdomFj
48 47 cbviunv nZmndomFm=kZjkdomFj
49 48 eleq2i ynZmndomFmykZjkdomFj
50 27 eleq1i mZFmydomjZFjydom
51 49 50 anbi12i ynZmndomFmmZFmydomykZjkdomFjjZFjydom
52 51 rabbia2 ynZmndomFm|mZFmydom=ykZjkdomFj|jZFjydom
53 7 39 52 3eqtri D=ykZjkdomFj|jZFjydom
54 nfrab1 _xxnZmndomFm|mZFmxdom
55 7 54 nfcxfr _xD
56 nfcv _yD
57 nfcv _ymZFmx
58 nfcv _x
59 58 32 nffv _xjZFjy
60 27 a1i x=ymZFmy=jZFjy
61 37 60 eqtrd x=ymZFmx=jZFjy
62 61 fveq2d x=ymZFmx=jZFjy
63 55 56 57 59 62 cbvmptf xDmZFmx=yDjZFjy
64 8 63 eqtri G=yDjZFjy
65 9 10 3 4 5 6 53 64 smflim φGSMblFnS