Metamath Proof Explorer


Theorem smflim2

Description: The limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of Fremlin1 p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of Fremlin1 p. 39 ). TODO: this has fewer distinct variable conditions than smflim and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smflim2.n _ m F
smflim2.x _ x F
smflim2.m φ M
smflim2.z Z = M
smflim2.s φ S SAlg
smflim2.f φ F : Z SMblFn S
smflim2.d D = x n Z m n dom F m | m Z F m x dom
smflim2.g G = x D m Z F m x
Assertion smflim2 φ G SMblFn S

Proof

Step Hyp Ref Expression
1 smflim2.n _ m F
2 smflim2.x _ x F
3 smflim2.m φ M
4 smflim2.z Z = M
5 smflim2.s φ S SAlg
6 smflim2.f φ F : Z SMblFn S
7 smflim2.d D = x n Z m n dom F m | m Z F m x dom
8 smflim2.g G = x D m Z F m x
9 nfcv _ j F
10 nfcv _ y F
11 nfcv _ x Z
12 nfcv _ x n
13 nfcv _ x m
14 2 13 nffv _ x F m
15 14 nfdm _ x dom F m
16 12 15 nfiin _ x m n dom F m
17 11 16 nfiun _ x n Z m n dom F m
18 nfcv _ y n Z m n dom F m
19 nfv y m Z F m x dom
20 nfcv _ j F m y
21 nfcv _ m j
22 1 21 nffv _ m F j
23 nfcv _ m y
24 22 23 nffv _ m F j y
25 fveq2 m = j F m = F j
26 25 fveq1d m = j F m y = F j y
27 20 24 26 cbvmpt m Z F m y = j Z F j y
28 nfcv _ x j
29 2 28 nffv _ x F j
30 nfcv _ x y
31 29 30 nffv _ x F j y
32 11 31 nfmpt _ x j Z F j y
33 27 32 nfcxfr _ x m Z F m y
34 nfcv _ x dom
35 33 34 nfel x m Z F m y dom
36 fveq2 x = y F m x = F m y
37 36 mpteq2dv x = y m Z F m x = m Z F m y
38 37 eleq1d x = y m Z F m x dom m Z F m y dom
39 17 18 19 35 38 cbvrabw x n Z m n dom F m | m Z F m x dom = y n Z m n dom F m | m Z F m y dom
40 fveq2 n = k n = k
41 40 iineq1d n = k m n dom F m = m k dom F m
42 nfcv _ j dom F m
43 22 nfdm _ m dom F j
44 25 dmeqd m = j dom F m = dom F j
45 42 43 44 cbviin m k dom F m = j k dom F j
46 45 a1i n = k m k dom F m = j k dom F j
47 41 46 eqtrd n = k m n dom F m = j k dom F j
48 47 cbviunv n Z m n dom F m = k Z j k dom F j
49 48 eleq2i y n Z m n dom F m y k Z j k dom F j
50 27 eleq1i m Z F m y dom j Z F j y dom
51 49 50 anbi12i y n Z m n dom F m m Z F m y dom y k Z j k dom F j j Z F j y dom
52 51 rabbia2 y n Z m n dom F m | m Z F m y dom = y k Z j k dom F j | j Z F j y dom
53 7 39 52 3eqtri D = y k Z j k dom F j | j Z F j y dom
54 nfrab1 _ x x n Z m n dom F m | m Z F m x dom
55 7 54 nfcxfr _ x D
56 nfcv _ y D
57 nfcv _ y m Z F m x
58 nfcv _ x
59 58 32 nffv _ x j Z F j y
60 27 a1i x = y m Z F m y = j Z F j y
61 37 60 eqtrd x = y m Z F m x = j Z F j y
62 61 fveq2d x = y m Z F m x = j Z F j y
63 55 56 57 59 62 cbvmptf x D m Z F m x = y D j Z F j y
64 8 63 eqtri G = y D j Z F j y
65 9 10 3 4 5 6 53 64 smflim φ G SMblFn S