Metamath Proof Explorer


Theorem smfpimcclem

Description: Lemma for smfpimcc given the choice function C . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smfpimcclem.n n φ
smfpimcclem.z Z V
smfpimcclem.s φ S W
smfpimcclem.c φ y ran n Z s S | F n -1 A = s dom F n C y y
smfpimcclem.h H = n Z C s S | F n -1 A = s dom F n
Assertion smfpimcclem φ h h : Z S n Z F n -1 A = h n dom F n

Proof

Step Hyp Ref Expression
1 smfpimcclem.n n φ
2 smfpimcclem.z Z V
3 smfpimcclem.s φ S W
4 smfpimcclem.c φ y ran n Z s S | F n -1 A = s dom F n C y y
5 smfpimcclem.h H = n Z C s S | F n -1 A = s dom F n
6 nfcv _ s S
7 6 ssrab2f s S | F n -1 A = s dom F n S
8 eqid s S | F n -1 A = s dom F n = s S | F n -1 A = s dom F n
9 8 3 rabexd φ s S | F n -1 A = s dom F n V
10 9 adantr φ n Z s S | F n -1 A = s dom F n V
11 simpl φ n Z φ
12 simpr φ n Z n Z
13 eqid n Z s S | F n -1 A = s dom F n = n Z s S | F n -1 A = s dom F n
14 13 elrnmpt1 n Z s S | F n -1 A = s dom F n V s S | F n -1 A = s dom F n ran n Z s S | F n -1 A = s dom F n
15 12 10 14 syl2anc φ n Z s S | F n -1 A = s dom F n ran n Z s S | F n -1 A = s dom F n
16 11 15 jca φ n Z φ s S | F n -1 A = s dom F n ran n Z s S | F n -1 A = s dom F n
17 eleq1 y = s S | F n -1 A = s dom F n y ran n Z s S | F n -1 A = s dom F n s S | F n -1 A = s dom F n ran n Z s S | F n -1 A = s dom F n
18 17 anbi2d y = s S | F n -1 A = s dom F n φ y ran n Z s S | F n -1 A = s dom F n φ s S | F n -1 A = s dom F n ran n Z s S | F n -1 A = s dom F n
19 fveq2 y = s S | F n -1 A = s dom F n C y = C s S | F n -1 A = s dom F n
20 id y = s S | F n -1 A = s dom F n y = s S | F n -1 A = s dom F n
21 19 20 eleq12d y = s S | F n -1 A = s dom F n C y y C s S | F n -1 A = s dom F n s S | F n -1 A = s dom F n
22 18 21 imbi12d y = s S | F n -1 A = s dom F n φ y ran n Z s S | F n -1 A = s dom F n C y y φ s S | F n -1 A = s dom F n ran n Z s S | F n -1 A = s dom F n C s S | F n -1 A = s dom F n s S | F n -1 A = s dom F n
23 22 4 vtoclg s S | F n -1 A = s dom F n V φ s S | F n -1 A = s dom F n ran n Z s S | F n -1 A = s dom F n C s S | F n -1 A = s dom F n s S | F n -1 A = s dom F n
24 10 16 23 sylc φ n Z C s S | F n -1 A = s dom F n s S | F n -1 A = s dom F n
25 7 24 sselid φ n Z C s S | F n -1 A = s dom F n S
26 1 25 5 fmptdf φ H : Z S
27 nfcv _ s C
28 nfrab1 _ s s S | F n -1 A = s dom F n
29 27 28 nffv _ s C s S | F n -1 A = s dom F n
30 nfcv _ s F n -1 A
31 nfcv _ s dom F n
32 29 31 nfin _ s C s S | F n -1 A = s dom F n dom F n
33 30 32 nfeq s F n -1 A = C s S | F n -1 A = s dom F n dom F n
34 ineq1 s = C s S | F n -1 A = s dom F n s dom F n = C s S | F n -1 A = s dom F n dom F n
35 34 eqeq2d s = C s S | F n -1 A = s dom F n F n -1 A = s dom F n F n -1 A = C s S | F n -1 A = s dom F n dom F n
36 29 6 33 35 elrabf C s S | F n -1 A = s dom F n s S | F n -1 A = s dom F n C s S | F n -1 A = s dom F n S F n -1 A = C s S | F n -1 A = s dom F n dom F n
37 24 36 sylib φ n Z C s S | F n -1 A = s dom F n S F n -1 A = C s S | F n -1 A = s dom F n dom F n
38 37 simprd φ n Z F n -1 A = C s S | F n -1 A = s dom F n dom F n
39 5 a1i φ H = n Z C s S | F n -1 A = s dom F n
40 24 elexd φ n Z C s S | F n -1 A = s dom F n V
41 39 40 fvmpt2d φ n Z H n = C s S | F n -1 A = s dom F n
42 41 ineq1d φ n Z H n dom F n = C s S | F n -1 A = s dom F n dom F n
43 38 42 eqtr4d φ n Z F n -1 A = H n dom F n
44 43 ex φ n Z F n -1 A = H n dom F n
45 1 44 ralrimi φ n Z F n -1 A = H n dom F n
46 2 elexi Z V
47 46 mptex n Z C s S | F n -1 A = s dom F n V
48 5 47 eqeltri H V
49 feq1 h = H h : Z S H : Z S
50 nfcv _ n h
51 nfmpt1 _ n n Z C s S | F n -1 A = s dom F n
52 5 51 nfcxfr _ n H
53 50 52 nfeq n h = H
54 fveq1 h = H h n = H n
55 54 ineq1d h = H h n dom F n = H n dom F n
56 55 eqeq2d h = H F n -1 A = h n dom F n F n -1 A = H n dom F n
57 53 56 ralbid h = H n Z F n -1 A = h n dom F n n Z F n -1 A = H n dom F n
58 49 57 anbi12d h = H h : Z S n Z F n -1 A = h n dom F n H : Z S n Z F n -1 A = H n dom F n
59 48 58 spcev H : Z S n Z F n -1 A = H n dom F n h h : Z S n Z F n -1 A = h n dom F n
60 26 45 59 syl2anc φ h h : Z S n Z F n -1 A = h n dom F n