| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfpimcc.1 |
|
| 2 |
|
smfpimcc.z |
|
| 3 |
|
smfpimcc.s |
|
| 4 |
|
smfpimcc.f |
|
| 5 |
|
smfpimcc.j |
|
| 6 |
|
smfpimcc.b |
|
| 7 |
|
smfpimcc.a |
|
| 8 |
2
|
uzct |
|
| 9 |
8
|
a1i |
|
| 10 |
|
mptct |
|
| 11 |
|
rnct |
|
| 12 |
9 10 11
|
3syl |
|
| 13 |
|
vex |
|
| 14 |
|
eqid |
|
| 15 |
14
|
elrnmpt |
|
| 16 |
13 15
|
ax-mp |
|
| 17 |
16
|
biimpi |
|
| 18 |
17
|
adantl |
|
| 19 |
|
simp3 |
|
| 20 |
3
|
adantr |
|
| 21 |
4
|
ffvelcdmda |
|
| 22 |
|
eqid |
|
| 23 |
7
|
adantr |
|
| 24 |
|
eqid |
|
| 25 |
20 21 22 5 6 23 24
|
smfpimbor1 |
|
| 26 |
|
fvex |
|
| 27 |
26
|
dmex |
|
| 28 |
27
|
a1i |
|
| 29 |
|
elrest |
|
| 30 |
3 28 29
|
syl2anc |
|
| 31 |
30
|
adantr |
|
| 32 |
25 31
|
mpbid |
|
| 33 |
|
rabn0 |
|
| 34 |
32 33
|
sylibr |
|
| 35 |
34
|
3adant3 |
|
| 36 |
19 35
|
eqnetrd |
|
| 37 |
36
|
3exp |
|
| 38 |
37
|
rexlimdv |
|
| 39 |
38
|
adantr |
|
| 40 |
18 39
|
mpd |
|
| 41 |
12 40
|
axccd2 |
|
| 42 |
|
nfv |
|
| 43 |
|
nfmpt1 |
|
| 44 |
43
|
nfrn |
|
| 45 |
|
nfv |
|
| 46 |
44 45
|
nfralw |
|
| 47 |
42 46
|
nfan |
|
| 48 |
2
|
fvexi |
|
| 49 |
3
|
adantr |
|
| 50 |
|
fveq2 |
|
| 51 |
|
id |
|
| 52 |
50 51
|
eleq12d |
|
| 53 |
52
|
rspccva |
|
| 54 |
53
|
adantll |
|
| 55 |
|
eqid |
|
| 56 |
47 48 49 54 55
|
smfpimcclem |
|
| 57 |
56
|
ex |
|
| 58 |
57
|
exlimdv |
|
| 59 |
41 58
|
mpd |
|
| 60 |
|
nfcv |
|
| 61 |
1 60
|
nffv |
|
| 62 |
61
|
nfcnv |
|
| 63 |
|
nfcv |
|
| 64 |
62 63
|
nfima |
|
| 65 |
|
nfcv |
|
| 66 |
61
|
nfdm |
|
| 67 |
65 66
|
nfin |
|
| 68 |
64 67
|
nfeq |
|
| 69 |
|
nfv |
|
| 70 |
|
fveq2 |
|
| 71 |
70
|
cnveqd |
|
| 72 |
71
|
imaeq1d |
|
| 73 |
|
fveq2 |
|
| 74 |
70
|
dmeqd |
|
| 75 |
73 74
|
ineq12d |
|
| 76 |
72 75
|
eqeq12d |
|
| 77 |
68 69 76
|
cbvralw |
|
| 78 |
77
|
anbi2i |
|
| 79 |
78
|
exbii |
|
| 80 |
59 79
|
sylib |
|