| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfpimcc.1 | ⊢ Ⅎ 𝑛 𝐹 | 
						
							| 2 |  | smfpimcc.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | smfpimcc.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 4 |  | smfpimcc.f | ⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) | 
						
							| 5 |  | smfpimcc.j | ⊢ 𝐽  =  ( topGen ‘ ran  (,) ) | 
						
							| 6 |  | smfpimcc.b | ⊢ 𝐵  =  ( SalGen ‘ 𝐽 ) | 
						
							| 7 |  | smfpimcc.a | ⊢ ( 𝜑  →  𝐴  ∈  𝐵 ) | 
						
							| 8 | 2 | uzct | ⊢ 𝑍  ≼  ω | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  𝑍  ≼  ω ) | 
						
							| 10 |  | mptct | ⊢ ( 𝑍  ≼  ω  →  ( 𝑚  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } )  ≼  ω ) | 
						
							| 11 |  | rnct | ⊢ ( ( 𝑚  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } )  ≼  ω  →  ran  ( 𝑚  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } )  ≼  ω ) | 
						
							| 12 | 9 10 11 | 3syl | ⊢ ( 𝜑  →  ran  ( 𝑚  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } )  ≼  ω ) | 
						
							| 13 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 14 |  | eqid | ⊢ ( 𝑚  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } )  =  ( 𝑚  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } ) | 
						
							| 15 | 14 | elrnmpt | ⊢ ( 𝑦  ∈  V  →  ( 𝑦  ∈  ran  ( 𝑚  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } )  ↔  ∃ 𝑚  ∈  𝑍 𝑦  =  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } ) ) | 
						
							| 16 | 13 15 | ax-mp | ⊢ ( 𝑦  ∈  ran  ( 𝑚  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } )  ↔  ∃ 𝑚  ∈  𝑍 𝑦  =  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } ) | 
						
							| 17 | 16 | biimpi | ⊢ ( 𝑦  ∈  ran  ( 𝑚  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } )  →  ∃ 𝑚  ∈  𝑍 𝑦  =  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ran  ( 𝑚  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } ) )  →  ∃ 𝑚  ∈  𝑍 𝑦  =  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } ) | 
						
							| 19 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍  ∧  𝑦  =  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } )  →  𝑦  =  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } ) | 
						
							| 20 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  𝑆  ∈  SAlg ) | 
						
							| 21 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑚 )  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 22 |  | eqid | ⊢ dom  ( 𝐹 ‘ 𝑚 )  =  dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 23 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  𝐴  ∈  𝐵 ) | 
						
							| 24 |  | eqid | ⊢ ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 ) | 
						
							| 25 | 20 21 22 5 6 23 24 | smfpimbor1 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  ∈  ( 𝑆  ↾t  dom  ( 𝐹 ‘ 𝑚 ) ) ) | 
						
							| 26 |  | fvex | ⊢ ( 𝐹 ‘ 𝑚 )  ∈  V | 
						
							| 27 | 26 | dmex | ⊢ dom  ( 𝐹 ‘ 𝑚 )  ∈  V | 
						
							| 28 | 27 | a1i | ⊢ ( 𝜑  →  dom  ( 𝐹 ‘ 𝑚 )  ∈  V ) | 
						
							| 29 |  | elrest | ⊢ ( ( 𝑆  ∈  SAlg  ∧  dom  ( 𝐹 ‘ 𝑚 )  ∈  V )  →  ( ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  ∈  ( 𝑆  ↾t  dom  ( 𝐹 ‘ 𝑚 ) )  ↔  ∃ 𝑠  ∈  𝑆 ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) ) ) | 
						
							| 30 | 3 28 29 | syl2anc | ⊢ ( 𝜑  →  ( ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  ∈  ( 𝑆  ↾t  dom  ( 𝐹 ‘ 𝑚 ) )  ↔  ∃ 𝑠  ∈  𝑆 ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  ∈  ( 𝑆  ↾t  dom  ( 𝐹 ‘ 𝑚 ) )  ↔  ∃ 𝑠  ∈  𝑆 ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) ) ) | 
						
							| 32 | 25 31 | mpbid | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ∃ 𝑠  ∈  𝑆 ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) ) | 
						
							| 33 |  | rabn0 | ⊢ ( { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) }  ≠  ∅  ↔  ∃ 𝑠  ∈  𝑆 ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) ) | 
						
							| 34 | 32 33 | sylibr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) }  ≠  ∅ ) | 
						
							| 35 | 34 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍  ∧  𝑦  =  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } )  →  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) }  ≠  ∅ ) | 
						
							| 36 | 19 35 | eqnetrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍  ∧  𝑦  =  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } )  →  𝑦  ≠  ∅ ) | 
						
							| 37 | 36 | 3exp | ⊢ ( 𝜑  →  ( 𝑚  ∈  𝑍  →  ( 𝑦  =  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) }  →  𝑦  ≠  ∅ ) ) ) | 
						
							| 38 | 37 | rexlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑚  ∈  𝑍 𝑦  =  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) }  →  𝑦  ≠  ∅ ) ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ran  ( 𝑚  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } ) )  →  ( ∃ 𝑚  ∈  𝑍 𝑦  =  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) }  →  𝑦  ≠  ∅ ) ) | 
						
							| 40 | 18 39 | mpd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ran  ( 𝑚  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } ) )  →  𝑦  ≠  ∅ ) | 
						
							| 41 | 12 40 | axccd2 | ⊢ ( 𝜑  →  ∃ 𝑓 ∀ 𝑦  ∈  ran  ( 𝑚  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦 ) | 
						
							| 42 |  | nfv | ⊢ Ⅎ 𝑚 𝜑 | 
						
							| 43 |  | nfmpt1 | ⊢ Ⅎ 𝑚 ( 𝑚  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } ) | 
						
							| 44 | 43 | nfrn | ⊢ Ⅎ 𝑚 ran  ( 𝑚  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } ) | 
						
							| 45 |  | nfv | ⊢ Ⅎ 𝑚 ( 𝑓 ‘ 𝑦 )  ∈  𝑦 | 
						
							| 46 | 44 45 | nfralw | ⊢ Ⅎ 𝑚 ∀ 𝑦  ∈  ran  ( 𝑚  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦 | 
						
							| 47 | 42 46 | nfan | ⊢ Ⅎ 𝑚 ( 𝜑  ∧  ∀ 𝑦  ∈  ran  ( 𝑚  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦 ) | 
						
							| 48 | 2 | fvexi | ⊢ 𝑍  ∈  V | 
						
							| 49 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ∀ 𝑦  ∈  ran  ( 𝑚  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦 )  →  𝑆  ∈  SAlg ) | 
						
							| 50 |  | fveq2 | ⊢ ( 𝑦  =  𝑤  →  ( 𝑓 ‘ 𝑦 )  =  ( 𝑓 ‘ 𝑤 ) ) | 
						
							| 51 |  | id | ⊢ ( 𝑦  =  𝑤  →  𝑦  =  𝑤 ) | 
						
							| 52 | 50 51 | eleq12d | ⊢ ( 𝑦  =  𝑤  →  ( ( 𝑓 ‘ 𝑦 )  ∈  𝑦  ↔  ( 𝑓 ‘ 𝑤 )  ∈  𝑤 ) ) | 
						
							| 53 | 52 | rspccva | ⊢ ( ( ∀ 𝑦  ∈  ran  ( 𝑚  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦  ∧  𝑤  ∈  ran  ( 𝑚  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } ) )  →  ( 𝑓 ‘ 𝑤 )  ∈  𝑤 ) | 
						
							| 54 | 53 | adantll | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑦  ∈  ran  ( 𝑚  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦 )  ∧  𝑤  ∈  ran  ( 𝑚  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } ) )  →  ( 𝑓 ‘ 𝑤 )  ∈  𝑤 ) | 
						
							| 55 |  | eqid | ⊢ ( 𝑚  ∈  𝑍  ↦  ( 𝑓 ‘ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } ) )  =  ( 𝑚  ∈  𝑍  ↦  ( 𝑓 ‘ { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } ) ) | 
						
							| 56 | 47 48 49 54 55 | smfpimcclem | ⊢ ( ( 𝜑  ∧  ∀ 𝑦  ∈  ran  ( 𝑚  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦 )  →  ∃ ℎ ( ℎ : 𝑍 ⟶ 𝑆  ∧  ∀ 𝑚  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( ( ℎ ‘ 𝑚 )  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) ) ) | 
						
							| 57 | 56 | ex | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  ran  ( 𝑚  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦  →  ∃ ℎ ( ℎ : 𝑍 ⟶ 𝑆  ∧  ∀ 𝑚  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( ( ℎ ‘ 𝑚 )  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) ) ) ) | 
						
							| 58 | 57 | exlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑓 ∀ 𝑦  ∈  ran  ( 𝑚  ∈  𝑍  ↦  { 𝑠  ∈  𝑆  ∣  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( 𝑠  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) } ) ( 𝑓 ‘ 𝑦 )  ∈  𝑦  →  ∃ ℎ ( ℎ : 𝑍 ⟶ 𝑆  ∧  ∀ 𝑚  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( ( ℎ ‘ 𝑚 )  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) ) ) ) | 
						
							| 59 | 41 58 | mpd | ⊢ ( 𝜑  →  ∃ ℎ ( ℎ : 𝑍 ⟶ 𝑆  ∧  ∀ 𝑚  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( ( ℎ ‘ 𝑚 )  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) ) ) | 
						
							| 60 |  | nfcv | ⊢ Ⅎ 𝑛 𝑚 | 
						
							| 61 | 1 60 | nffv | ⊢ Ⅎ 𝑛 ( 𝐹 ‘ 𝑚 ) | 
						
							| 62 | 61 | nfcnv | ⊢ Ⅎ 𝑛 ◡ ( 𝐹 ‘ 𝑚 ) | 
						
							| 63 |  | nfcv | ⊢ Ⅎ 𝑛 𝐴 | 
						
							| 64 | 62 63 | nfima | ⊢ Ⅎ 𝑛 ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 ) | 
						
							| 65 |  | nfcv | ⊢ Ⅎ 𝑛 ( ℎ ‘ 𝑚 ) | 
						
							| 66 | 61 | nfdm | ⊢ Ⅎ 𝑛 dom  ( 𝐹 ‘ 𝑚 ) | 
						
							| 67 | 65 66 | nfin | ⊢ Ⅎ 𝑛 ( ( ℎ ‘ 𝑚 )  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 68 | 64 67 | nfeq | ⊢ Ⅎ 𝑛 ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( ( ℎ ‘ 𝑚 )  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 69 |  | nfv | ⊢ Ⅎ 𝑚 ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( ( ℎ ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 70 |  | fveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 𝐹 ‘ 𝑚 )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 71 | 70 | cnveqd | ⊢ ( 𝑚  =  𝑛  →  ◡ ( 𝐹 ‘ 𝑚 )  =  ◡ ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 72 | 71 | imaeq1d | ⊢ ( 𝑚  =  𝑛  →  ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 ) ) | 
						
							| 73 |  | fveq2 | ⊢ ( 𝑚  =  𝑛  →  ( ℎ ‘ 𝑚 )  =  ( ℎ ‘ 𝑛 ) ) | 
						
							| 74 | 70 | dmeqd | ⊢ ( 𝑚  =  𝑛  →  dom  ( 𝐹 ‘ 𝑚 )  =  dom  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 75 | 73 74 | ineq12d | ⊢ ( 𝑚  =  𝑛  →  ( ( ℎ ‘ 𝑚 )  ∩  dom  ( 𝐹 ‘ 𝑚 ) )  =  ( ( ℎ ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 76 | 72 75 | eqeq12d | ⊢ ( 𝑚  =  𝑛  →  ( ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( ( ℎ ‘ 𝑚 )  ∩  dom  ( 𝐹 ‘ 𝑚 ) )  ↔  ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( ( ℎ ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 77 | 68 69 76 | cbvralw | ⊢ ( ∀ 𝑚  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( ( ℎ ‘ 𝑚 )  ∩  dom  ( 𝐹 ‘ 𝑚 ) )  ↔  ∀ 𝑛  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( ( ℎ ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 78 | 77 | anbi2i | ⊢ ( ( ℎ : 𝑍 ⟶ 𝑆  ∧  ∀ 𝑚  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( ( ℎ ‘ 𝑚 )  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) )  ↔  ( ℎ : 𝑍 ⟶ 𝑆  ∧  ∀ 𝑛  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( ( ℎ ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 79 | 78 | exbii | ⊢ ( ∃ ℎ ( ℎ : 𝑍 ⟶ 𝑆  ∧  ∀ 𝑚  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑚 )  “  𝐴 )  =  ( ( ℎ ‘ 𝑚 )  ∩  dom  ( 𝐹 ‘ 𝑚 ) ) )  ↔  ∃ ℎ ( ℎ : 𝑍 ⟶ 𝑆  ∧  ∀ 𝑛  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( ( ℎ ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 80 | 59 79 | sylib | ⊢ ( 𝜑  →  ∃ ℎ ( ℎ : 𝑍 ⟶ 𝑆  ∧  ∀ 𝑛  ∈  𝑍 ( ◡ ( 𝐹 ‘ 𝑛 )  “  𝐴 )  =  ( ( ℎ ‘ 𝑛 )  ∩  dom  ( 𝐹 ‘ 𝑛 ) ) ) ) |