| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfpimcc.1 |
⊢ Ⅎ 𝑛 𝐹 |
| 2 |
|
smfpimcc.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 3 |
|
smfpimcc.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
| 4 |
|
smfpimcc.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
| 5 |
|
smfpimcc.j |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
| 6 |
|
smfpimcc.b |
⊢ 𝐵 = ( SalGen ‘ 𝐽 ) |
| 7 |
|
smfpimcc.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
| 8 |
2
|
uzct |
⊢ 𝑍 ≼ ω |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → 𝑍 ≼ ω ) |
| 10 |
|
mptct |
⊢ ( 𝑍 ≼ ω → ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ≼ ω ) |
| 11 |
|
rnct |
⊢ ( ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ≼ ω → ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ≼ ω ) |
| 12 |
9 10 11
|
3syl |
⊢ ( 𝜑 → ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ≼ ω ) |
| 13 |
|
vex |
⊢ 𝑦 ∈ V |
| 14 |
|
eqid |
⊢ ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) = ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) |
| 15 |
14
|
elrnmpt |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ↔ ∃ 𝑚 ∈ 𝑍 𝑦 = { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ) |
| 16 |
13 15
|
ax-mp |
⊢ ( 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ↔ ∃ 𝑚 ∈ 𝑍 𝑦 = { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) |
| 17 |
16
|
biimpi |
⊢ ( 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) → ∃ 𝑚 ∈ 𝑍 𝑦 = { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ) → ∃ 𝑚 ∈ 𝑍 𝑦 = { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) |
| 19 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑦 = { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) → 𝑦 = { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) |
| 20 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝑆 ∈ SAlg ) |
| 21 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
| 22 |
|
eqid |
⊢ dom ( 𝐹 ‘ 𝑚 ) = dom ( 𝐹 ‘ 𝑚 ) |
| 23 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝐴 ∈ 𝐵 ) |
| 24 |
|
eqid |
⊢ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) |
| 25 |
20 21 22 5 6 23 24
|
smfpimbor1 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) ∈ ( 𝑆 ↾t dom ( 𝐹 ‘ 𝑚 ) ) ) |
| 26 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑚 ) ∈ V |
| 27 |
26
|
dmex |
⊢ dom ( 𝐹 ‘ 𝑚 ) ∈ V |
| 28 |
27
|
a1i |
⊢ ( 𝜑 → dom ( 𝐹 ‘ 𝑚 ) ∈ V ) |
| 29 |
|
elrest |
⊢ ( ( 𝑆 ∈ SAlg ∧ dom ( 𝐹 ‘ 𝑚 ) ∈ V ) → ( ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) ∈ ( 𝑆 ↾t dom ( 𝐹 ‘ 𝑚 ) ) ↔ ∃ 𝑠 ∈ 𝑆 ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 30 |
3 28 29
|
syl2anc |
⊢ ( 𝜑 → ( ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) ∈ ( 𝑆 ↾t dom ( 𝐹 ‘ 𝑚 ) ) ↔ ∃ 𝑠 ∈ 𝑆 ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) ∈ ( 𝑆 ↾t dom ( 𝐹 ‘ 𝑚 ) ) ↔ ∃ 𝑠 ∈ 𝑆 ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 32 |
25 31
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ∃ 𝑠 ∈ 𝑆 ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) |
| 33 |
|
rabn0 |
⊢ ( { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ≠ ∅ ↔ ∃ 𝑠 ∈ 𝑆 ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) |
| 34 |
32 33
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ≠ ∅ ) |
| 35 |
34
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑦 = { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) → { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ≠ ∅ ) |
| 36 |
19 35
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑦 = { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) → 𝑦 ≠ ∅ ) |
| 37 |
36
|
3exp |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑍 → ( 𝑦 = { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } → 𝑦 ≠ ∅ ) ) ) |
| 38 |
37
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ 𝑍 𝑦 = { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } → 𝑦 ≠ ∅ ) ) |
| 39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ) → ( ∃ 𝑚 ∈ 𝑍 𝑦 = { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } → 𝑦 ≠ ∅ ) ) |
| 40 |
18 39
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ) → 𝑦 ≠ ∅ ) |
| 41 |
12 40
|
axccd2 |
⊢ ( 𝜑 → ∃ 𝑓 ∀ 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) |
| 42 |
|
nfv |
⊢ Ⅎ 𝑚 𝜑 |
| 43 |
|
nfmpt1 |
⊢ Ⅎ 𝑚 ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) |
| 44 |
43
|
nfrn |
⊢ Ⅎ 𝑚 ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) |
| 45 |
|
nfv |
⊢ Ⅎ 𝑚 ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 |
| 46 |
44 45
|
nfralw |
⊢ Ⅎ 𝑚 ∀ 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 |
| 47 |
42 46
|
nfan |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ ∀ 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) |
| 48 |
2
|
fvexi |
⊢ 𝑍 ∈ V |
| 49 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) → 𝑆 ∈ SAlg ) |
| 50 |
|
fveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑤 ) ) |
| 51 |
|
id |
⊢ ( 𝑦 = 𝑤 → 𝑦 = 𝑤 ) |
| 52 |
50 51
|
eleq12d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ↔ ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) |
| 53 |
52
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ∧ 𝑤 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ) → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) |
| 54 |
53
|
adantll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ∧ 𝑤 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ) → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) |
| 55 |
|
eqid |
⊢ ( 𝑚 ∈ 𝑍 ↦ ( 𝑓 ‘ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ) = ( 𝑚 ∈ 𝑍 ↦ ( 𝑓 ‘ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ) |
| 56 |
47 48 49 54 55
|
smfpimcclem |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) → ∃ ℎ ( ℎ : 𝑍 ⟶ 𝑆 ∧ ∀ 𝑚 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑚 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 57 |
56
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 → ∃ ℎ ( ℎ : 𝑍 ⟶ 𝑆 ∧ ∀ 𝑚 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑚 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) ) ) |
| 58 |
57
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑓 ∀ 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 → ∃ ℎ ( ℎ : 𝑍 ⟶ 𝑆 ∧ ∀ 𝑚 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑚 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) ) ) |
| 59 |
41 58
|
mpd |
⊢ ( 𝜑 → ∃ ℎ ( ℎ : 𝑍 ⟶ 𝑆 ∧ ∀ 𝑚 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑚 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 60 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑚 |
| 61 |
1 60
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐹 ‘ 𝑚 ) |
| 62 |
61
|
nfcnv |
⊢ Ⅎ 𝑛 ◡ ( 𝐹 ‘ 𝑚 ) |
| 63 |
|
nfcv |
⊢ Ⅎ 𝑛 𝐴 |
| 64 |
62 63
|
nfima |
⊢ Ⅎ 𝑛 ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) |
| 65 |
|
nfcv |
⊢ Ⅎ 𝑛 ( ℎ ‘ 𝑚 ) |
| 66 |
61
|
nfdm |
⊢ Ⅎ 𝑛 dom ( 𝐹 ‘ 𝑚 ) |
| 67 |
65 66
|
nfin |
⊢ Ⅎ 𝑛 ( ( ℎ ‘ 𝑚 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) |
| 68 |
64 67
|
nfeq |
⊢ Ⅎ 𝑛 ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑚 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) |
| 69 |
|
nfv |
⊢ Ⅎ 𝑚 ( ◡ ( 𝐹 ‘ 𝑛 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) |
| 70 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 71 |
70
|
cnveqd |
⊢ ( 𝑚 = 𝑛 → ◡ ( 𝐹 ‘ 𝑚 ) = ◡ ( 𝐹 ‘ 𝑛 ) ) |
| 72 |
71
|
imaeq1d |
⊢ ( 𝑚 = 𝑛 → ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( ◡ ( 𝐹 ‘ 𝑛 ) “ 𝐴 ) ) |
| 73 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( ℎ ‘ 𝑚 ) = ( ℎ ‘ 𝑛 ) ) |
| 74 |
70
|
dmeqd |
⊢ ( 𝑚 = 𝑛 → dom ( 𝐹 ‘ 𝑚 ) = dom ( 𝐹 ‘ 𝑛 ) ) |
| 75 |
73 74
|
ineq12d |
⊢ ( 𝑚 = 𝑛 → ( ( ℎ ‘ 𝑚 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) = ( ( ℎ ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) |
| 76 |
72 75
|
eqeq12d |
⊢ ( 𝑚 = 𝑛 → ( ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑚 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) ↔ ( ◡ ( 𝐹 ‘ 𝑛 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 77 |
68 69 76
|
cbvralw |
⊢ ( ∀ 𝑚 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑚 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) ↔ ∀ 𝑛 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑛 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) |
| 78 |
77
|
anbi2i |
⊢ ( ( ℎ : 𝑍 ⟶ 𝑆 ∧ ∀ 𝑚 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑚 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) ↔ ( ℎ : 𝑍 ⟶ 𝑆 ∧ ∀ 𝑛 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑛 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 79 |
78
|
exbii |
⊢ ( ∃ ℎ ( ℎ : 𝑍 ⟶ 𝑆 ∧ ∀ 𝑚 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑚 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) ↔ ∃ ℎ ( ℎ : 𝑍 ⟶ 𝑆 ∧ ∀ 𝑛 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑛 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 80 |
59 79
|
sylib |
⊢ ( 𝜑 → ∃ ℎ ( ℎ : 𝑍 ⟶ 𝑆 ∧ ∀ 𝑛 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑛 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) ) |