Step |
Hyp |
Ref |
Expression |
1 |
|
smfpimcc.1 |
⊢ Ⅎ 𝑛 𝐹 |
2 |
|
smfpimcc.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
smfpimcc.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
4 |
|
smfpimcc.f |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( SMblFn ‘ 𝑆 ) ) |
5 |
|
smfpimcc.j |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
6 |
|
smfpimcc.b |
⊢ 𝐵 = ( SalGen ‘ 𝐽 ) |
7 |
|
smfpimcc.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
8 |
2
|
uzct |
⊢ 𝑍 ≼ ω |
9 |
8
|
a1i |
⊢ ( 𝜑 → 𝑍 ≼ ω ) |
10 |
|
mptct |
⊢ ( 𝑍 ≼ ω → ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ≼ ω ) |
11 |
|
rnct |
⊢ ( ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ≼ ω → ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ≼ ω ) |
12 |
9 10 11
|
3syl |
⊢ ( 𝜑 → ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ≼ ω ) |
13 |
|
vex |
⊢ 𝑦 ∈ V |
14 |
|
eqid |
⊢ ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) = ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) |
15 |
14
|
elrnmpt |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ↔ ∃ 𝑚 ∈ 𝑍 𝑦 = { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ) |
16 |
13 15
|
ax-mp |
⊢ ( 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ↔ ∃ 𝑚 ∈ 𝑍 𝑦 = { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) |
17 |
16
|
biimpi |
⊢ ( 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) → ∃ 𝑚 ∈ 𝑍 𝑦 = { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) |
18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ) → ∃ 𝑚 ∈ 𝑍 𝑦 = { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) |
19 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑦 = { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) → 𝑦 = { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) |
20 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝑆 ∈ SAlg ) |
21 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) ∈ ( SMblFn ‘ 𝑆 ) ) |
22 |
|
eqid |
⊢ dom ( 𝐹 ‘ 𝑚 ) = dom ( 𝐹 ‘ 𝑚 ) |
23 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝐴 ∈ 𝐵 ) |
24 |
|
eqid |
⊢ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) |
25 |
20 21 22 5 6 23 24
|
smfpimbor1 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) ∈ ( 𝑆 ↾t dom ( 𝐹 ‘ 𝑚 ) ) ) |
26 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑚 ) ∈ V |
27 |
26
|
dmex |
⊢ dom ( 𝐹 ‘ 𝑚 ) ∈ V |
28 |
27
|
a1i |
⊢ ( 𝜑 → dom ( 𝐹 ‘ 𝑚 ) ∈ V ) |
29 |
|
elrest |
⊢ ( ( 𝑆 ∈ SAlg ∧ dom ( 𝐹 ‘ 𝑚 ) ∈ V ) → ( ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) ∈ ( 𝑆 ↾t dom ( 𝐹 ‘ 𝑚 ) ) ↔ ∃ 𝑠 ∈ 𝑆 ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) ) |
30 |
3 28 29
|
syl2anc |
⊢ ( 𝜑 → ( ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) ∈ ( 𝑆 ↾t dom ( 𝐹 ‘ 𝑚 ) ) ↔ ∃ 𝑠 ∈ 𝑆 ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) ∈ ( 𝑆 ↾t dom ( 𝐹 ‘ 𝑚 ) ) ↔ ∃ 𝑠 ∈ 𝑆 ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) ) |
32 |
25 31
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ∃ 𝑠 ∈ 𝑆 ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) |
33 |
|
rabn0 |
⊢ ( { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ≠ ∅ ↔ ∃ 𝑠 ∈ 𝑆 ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) |
34 |
32 33
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ≠ ∅ ) |
35 |
34
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑦 = { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) → { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ≠ ∅ ) |
36 |
19 35
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑦 = { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) → 𝑦 ≠ ∅ ) |
37 |
36
|
3exp |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑍 → ( 𝑦 = { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } → 𝑦 ≠ ∅ ) ) ) |
38 |
37
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ 𝑍 𝑦 = { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } → 𝑦 ≠ ∅ ) ) |
39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ) → ( ∃ 𝑚 ∈ 𝑍 𝑦 = { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } → 𝑦 ≠ ∅ ) ) |
40 |
18 39
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ) → 𝑦 ≠ ∅ ) |
41 |
12 40
|
axccd2 |
⊢ ( 𝜑 → ∃ 𝑓 ∀ 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) |
42 |
|
nfv |
⊢ Ⅎ 𝑚 𝜑 |
43 |
|
nfmpt1 |
⊢ Ⅎ 𝑚 ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) |
44 |
43
|
nfrn |
⊢ Ⅎ 𝑚 ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) |
45 |
|
nfv |
⊢ Ⅎ 𝑚 ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 |
46 |
44 45
|
nfralw |
⊢ Ⅎ 𝑚 ∀ 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 |
47 |
42 46
|
nfan |
⊢ Ⅎ 𝑚 ( 𝜑 ∧ ∀ 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) |
48 |
2
|
fvexi |
⊢ 𝑍 ∈ V |
49 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) → 𝑆 ∈ SAlg ) |
50 |
|
fveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑤 ) ) |
51 |
|
id |
⊢ ( 𝑦 = 𝑤 → 𝑦 = 𝑤 ) |
52 |
50 51
|
eleq12d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ↔ ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) |
53 |
52
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ∧ 𝑤 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ) → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) |
54 |
53
|
adantll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ∧ 𝑤 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ) → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) |
55 |
|
eqid |
⊢ ( 𝑚 ∈ 𝑍 ↦ ( 𝑓 ‘ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ) = ( 𝑚 ∈ 𝑍 ↦ ( 𝑓 ‘ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ) |
56 |
47 48 49 54 55
|
smfpimcclem |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) → ∃ ℎ ( ℎ : 𝑍 ⟶ 𝑆 ∧ ∀ 𝑚 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑚 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) ) |
57 |
56
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 → ∃ ℎ ( ℎ : 𝑍 ⟶ 𝑆 ∧ ∀ 𝑚 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑚 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) ) ) |
58 |
57
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑓 ∀ 𝑦 ∈ ran ( 𝑚 ∈ 𝑍 ↦ { 𝑠 ∈ 𝑆 ∣ ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( 𝑠 ∩ dom ( 𝐹 ‘ 𝑚 ) ) } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 → ∃ ℎ ( ℎ : 𝑍 ⟶ 𝑆 ∧ ∀ 𝑚 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑚 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) ) ) |
59 |
41 58
|
mpd |
⊢ ( 𝜑 → ∃ ℎ ( ℎ : 𝑍 ⟶ 𝑆 ∧ ∀ 𝑚 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑚 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) ) |
60 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑚 |
61 |
1 60
|
nffv |
⊢ Ⅎ 𝑛 ( 𝐹 ‘ 𝑚 ) |
62 |
61
|
nfcnv |
⊢ Ⅎ 𝑛 ◡ ( 𝐹 ‘ 𝑚 ) |
63 |
|
nfcv |
⊢ Ⅎ 𝑛 𝐴 |
64 |
62 63
|
nfima |
⊢ Ⅎ 𝑛 ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) |
65 |
|
nfcv |
⊢ Ⅎ 𝑛 ( ℎ ‘ 𝑚 ) |
66 |
61
|
nfdm |
⊢ Ⅎ 𝑛 dom ( 𝐹 ‘ 𝑚 ) |
67 |
65 66
|
nfin |
⊢ Ⅎ 𝑛 ( ( ℎ ‘ 𝑚 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) |
68 |
64 67
|
nfeq |
⊢ Ⅎ 𝑛 ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑚 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) |
69 |
|
nfv |
⊢ Ⅎ 𝑚 ( ◡ ( 𝐹 ‘ 𝑛 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) |
70 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑛 ) ) |
71 |
70
|
cnveqd |
⊢ ( 𝑚 = 𝑛 → ◡ ( 𝐹 ‘ 𝑚 ) = ◡ ( 𝐹 ‘ 𝑛 ) ) |
72 |
71
|
imaeq1d |
⊢ ( 𝑚 = 𝑛 → ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( ◡ ( 𝐹 ‘ 𝑛 ) “ 𝐴 ) ) |
73 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( ℎ ‘ 𝑚 ) = ( ℎ ‘ 𝑛 ) ) |
74 |
70
|
dmeqd |
⊢ ( 𝑚 = 𝑛 → dom ( 𝐹 ‘ 𝑚 ) = dom ( 𝐹 ‘ 𝑛 ) ) |
75 |
73 74
|
ineq12d |
⊢ ( 𝑚 = 𝑛 → ( ( ℎ ‘ 𝑚 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) = ( ( ℎ ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) |
76 |
72 75
|
eqeq12d |
⊢ ( 𝑚 = 𝑛 → ( ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑚 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) ↔ ( ◡ ( 𝐹 ‘ 𝑛 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) ) |
77 |
68 69 76
|
cbvralw |
⊢ ( ∀ 𝑚 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑚 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) ↔ ∀ 𝑛 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑛 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) |
78 |
77
|
anbi2i |
⊢ ( ( ℎ : 𝑍 ⟶ 𝑆 ∧ ∀ 𝑚 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑚 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) ↔ ( ℎ : 𝑍 ⟶ 𝑆 ∧ ∀ 𝑛 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑛 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) ) |
79 |
78
|
exbii |
⊢ ( ∃ ℎ ( ℎ : 𝑍 ⟶ 𝑆 ∧ ∀ 𝑚 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑚 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑚 ) ∩ dom ( 𝐹 ‘ 𝑚 ) ) ) ↔ ∃ ℎ ( ℎ : 𝑍 ⟶ 𝑆 ∧ ∀ 𝑛 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑛 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) ) |
80 |
59 79
|
sylib |
⊢ ( 𝜑 → ∃ ℎ ( ℎ : 𝑍 ⟶ 𝑆 ∧ ∀ 𝑛 ∈ 𝑍 ( ◡ ( 𝐹 ‘ 𝑛 ) “ 𝐴 ) = ( ( ℎ ‘ 𝑛 ) ∩ dom ( 𝐹 ‘ 𝑛 ) ) ) ) |