Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Glauco Siliprandi Basic measure theory Measurable functions smfpimbor1  
				
		 
		
			
		 
		Description:   Given a sigma-measurable function, the preimage of a Borel set belongs
       to the subspace sigma-algebra induced by the domain of the function.
       Proposition 121E (f) of Fremlin1  p. 37 .  (Contributed by Glauco
       Siliprandi , 26-Jun-2021) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						smfpimbor1.s ⊢  ( 𝜑   →  𝑆   ∈  SAlg )  
					
						smfpimbor1.f ⊢  ( 𝜑   →  𝐹   ∈  ( SMblFn ‘ 𝑆  ) )  
					
						smfpimbor1.a ⊢  𝐷   =  dom  𝐹   
					
						smfpimbor1.j ⊢  𝐽   =  ( topGen ‘ ran  (,) )  
					
						smfpimbor1.b ⊢  𝐵   =  ( SalGen ‘ 𝐽  )  
					
						smfpimbor1.e ⊢  ( 𝜑   →  𝐸   ∈  𝐵  )  
					
						smfpimbor1.p ⊢  𝑃   =  ( ◡ 𝐹   “  𝐸  )  
				
					Assertion 
					smfpimbor1 ⊢   ( 𝜑   →  𝑃   ∈  ( 𝑆   ↾t   𝐷  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							smfpimbor1.s ⊢  ( 𝜑   →  𝑆   ∈  SAlg )  
						
							2 
								
							 
							smfpimbor1.f ⊢  ( 𝜑   →  𝐹   ∈  ( SMblFn ‘ 𝑆  ) )  
						
							3 
								
							 
							smfpimbor1.a ⊢  𝐷   =  dom  𝐹   
						
							4 
								
							 
							smfpimbor1.j ⊢  𝐽   =  ( topGen ‘ ran  (,) )  
						
							5 
								
							 
							smfpimbor1.b ⊢  𝐵   =  ( SalGen ‘ 𝐽  )  
						
							6 
								
							 
							smfpimbor1.e ⊢  ( 𝜑   →  𝐸   ∈  𝐵  )  
						
							7 
								
							 
							smfpimbor1.p ⊢  𝑃   =  ( ◡ 𝐹   “  𝐸  )  
						
							8 
								
							 
							eqid ⊢  { 𝑒   ∈  𝒫  ℝ  ∣  ( ◡ 𝐹   “  𝑒  )  ∈  ( 𝑆   ↾t   𝐷  ) }  =  { 𝑒   ∈  𝒫  ℝ  ∣  ( ◡ 𝐹   “  𝑒  )  ∈  ( 𝑆   ↾t   𝐷  ) }  
						
							9 
								1  2  3  4  5  6  7  8 
							 
							smfpimbor1lem2 ⊢  ( 𝜑   →  𝑃   ∈  ( 𝑆   ↾t   𝐷  ) )