Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Basic measure theory
Measurable functions
smfpimbor1
Metamath Proof Explorer
Description: Given a sigma-measurable function, the preimage of a Borel set belongs
to the subspace sigma-algebra induced by the domain of the function.
Proposition 121E (f) of Fremlin1 p. 37 . (Contributed by Glauco
Siliprandi , 26-Jun-2021)
Ref
Expression
Hypotheses
smfpimbor1.s
⊢ ( 𝜑 → 𝑆 ∈ SAlg )
smfpimbor1.f
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
smfpimbor1.a
⊢ 𝐷 = dom 𝐹
smfpimbor1.j
⊢ 𝐽 = ( topGen ‘ ran (,) )
smfpimbor1.b
⊢ 𝐵 = ( SalGen ‘ 𝐽 )
smfpimbor1.e
⊢ ( 𝜑 → 𝐸 ∈ 𝐵 )
smfpimbor1.p
⊢ 𝑃 = ( ◡ 𝐹 “ 𝐸 )
Assertion
smfpimbor1
⊢ ( 𝜑 → 𝑃 ∈ ( 𝑆 ↾t 𝐷 ) )
Proof
Step
Hyp
Ref
Expression
1
smfpimbor1.s
⊢ ( 𝜑 → 𝑆 ∈ SAlg )
2
smfpimbor1.f
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
3
smfpimbor1.a
⊢ 𝐷 = dom 𝐹
4
smfpimbor1.j
⊢ 𝐽 = ( topGen ‘ ran (,) )
5
smfpimbor1.b
⊢ 𝐵 = ( SalGen ‘ 𝐽 )
6
smfpimbor1.e
⊢ ( 𝜑 → 𝐸 ∈ 𝐵 )
7
smfpimbor1.p
⊢ 𝑃 = ( ◡ 𝐹 “ 𝐸 )
8
eqid
⊢ { 𝑒 ∈ 𝒫 ℝ ∣ ( ◡ 𝐹 “ 𝑒 ) ∈ ( 𝑆 ↾t 𝐷 ) } = { 𝑒 ∈ 𝒫 ℝ ∣ ( ◡ 𝐹 “ 𝑒 ) ∈ ( 𝑆 ↾t 𝐷 ) }
9
1 2 3 4 5 6 7 8
smfpimbor1lem2
⊢ ( 𝜑 → 𝑃 ∈ ( 𝑆 ↾t 𝐷 ) )