Metamath Proof Explorer


Theorem smfpimbor1

Description: Given a sigma-measurable function, the preimage of a Borel set belongs to the subspace sigma-algebra induced by the domain of the function. Proposition 121E (f) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpimbor1.s ( 𝜑𝑆 ∈ SAlg )
smfpimbor1.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
smfpimbor1.a 𝐷 = dom 𝐹
smfpimbor1.j 𝐽 = ( topGen ‘ ran (,) )
smfpimbor1.b 𝐵 = ( SalGen ‘ 𝐽 )
smfpimbor1.e ( 𝜑𝐸𝐵 )
smfpimbor1.p 𝑃 = ( 𝐹𝐸 )
Assertion smfpimbor1 ( 𝜑𝑃 ∈ ( 𝑆t 𝐷 ) )

Proof

Step Hyp Ref Expression
1 smfpimbor1.s ( 𝜑𝑆 ∈ SAlg )
2 smfpimbor1.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
3 smfpimbor1.a 𝐷 = dom 𝐹
4 smfpimbor1.j 𝐽 = ( topGen ‘ ran (,) )
5 smfpimbor1.b 𝐵 = ( SalGen ‘ 𝐽 )
6 smfpimbor1.e ( 𝜑𝐸𝐵 )
7 smfpimbor1.p 𝑃 = ( 𝐹𝐸 )
8 eqid { 𝑒 ∈ 𝒫 ℝ ∣ ( 𝐹𝑒 ) ∈ ( 𝑆t 𝐷 ) } = { 𝑒 ∈ 𝒫 ℝ ∣ ( 𝐹𝑒 ) ∈ ( 𝑆t 𝐷 ) }
9 1 2 3 4 5 6 7 8 smfpimbor1lem2 ( 𝜑𝑃 ∈ ( 𝑆t 𝐷 ) )