Step |
Hyp |
Ref |
Expression |
1 |
|
smfpimbor1lem2.s |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
2 |
|
smfpimbor1lem2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
3 |
|
smfpimbor1lem2.a |
⊢ 𝐷 = dom 𝐹 |
4 |
|
smfpimbor1lem2.j |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
5 |
|
smfpimbor1lem2.b |
⊢ 𝐵 = ( SalGen ‘ 𝐽 ) |
6 |
|
smfpimbor1lem2.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝐵 ) |
7 |
|
smfpimbor1lem2.p |
⊢ 𝑃 = ( ◡ 𝐹 “ 𝐸 ) |
8 |
|
smfpimbor1lem2.t |
⊢ 𝑇 = { 𝑒 ∈ 𝒫 ℝ ∣ ( ◡ 𝐹 “ 𝑒 ) ∈ ( 𝑆 ↾t 𝐷 ) } |
9 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
10 |
4 9
|
eqeltri |
⊢ 𝐽 ∈ Top |
11 |
10
|
a1i |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
12 |
1 2 3 8
|
smfresal |
⊢ ( 𝜑 → 𝑇 ∈ SAlg ) |
13 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → 𝑆 ∈ SAlg ) |
14 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) ) |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ∈ 𝐽 ) |
16 |
13 14 3 4 15 8
|
smfpimbor1lem1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ∈ 𝑇 ) |
17 |
16
|
ssd |
⊢ ( 𝜑 → 𝐽 ⊆ 𝑇 ) |
18 |
|
nfcv |
⊢ Ⅎ 𝑒 𝑥 |
19 |
|
nfrab1 |
⊢ Ⅎ 𝑒 { 𝑒 ∈ 𝒫 ℝ ∣ ( ◡ 𝐹 “ 𝑒 ) ∈ ( 𝑆 ↾t 𝐷 ) } |
20 |
8 19
|
nfcxfr |
⊢ Ⅎ 𝑒 𝑇 |
21 |
18 20
|
eluni2f |
⊢ ( 𝑥 ∈ ∪ 𝑇 ↔ ∃ 𝑒 ∈ 𝑇 𝑥 ∈ 𝑒 ) |
22 |
21
|
biimpi |
⊢ ( 𝑥 ∈ ∪ 𝑇 → ∃ 𝑒 ∈ 𝑇 𝑥 ∈ 𝑒 ) |
23 |
20
|
nfuni |
⊢ Ⅎ 𝑒 ∪ 𝑇 |
24 |
18 23
|
nfel |
⊢ Ⅎ 𝑒 𝑥 ∈ ∪ 𝑇 |
25 |
|
nfv |
⊢ Ⅎ 𝑒 𝑥 ∈ ℝ |
26 |
8
|
eleq2i |
⊢ ( 𝑒 ∈ 𝑇 ↔ 𝑒 ∈ { 𝑒 ∈ 𝒫 ℝ ∣ ( ◡ 𝐹 “ 𝑒 ) ∈ ( 𝑆 ↾t 𝐷 ) } ) |
27 |
26
|
biimpi |
⊢ ( 𝑒 ∈ 𝑇 → 𝑒 ∈ { 𝑒 ∈ 𝒫 ℝ ∣ ( ◡ 𝐹 “ 𝑒 ) ∈ ( 𝑆 ↾t 𝐷 ) } ) |
28 |
|
rabidim1 |
⊢ ( 𝑒 ∈ { 𝑒 ∈ 𝒫 ℝ ∣ ( ◡ 𝐹 “ 𝑒 ) ∈ ( 𝑆 ↾t 𝐷 ) } → 𝑒 ∈ 𝒫 ℝ ) |
29 |
27 28
|
syl |
⊢ ( 𝑒 ∈ 𝑇 → 𝑒 ∈ 𝒫 ℝ ) |
30 |
|
elpwi |
⊢ ( 𝑒 ∈ 𝒫 ℝ → 𝑒 ⊆ ℝ ) |
31 |
29 30
|
syl |
⊢ ( 𝑒 ∈ 𝑇 → 𝑒 ⊆ ℝ ) |
32 |
31
|
adantr |
⊢ ( ( 𝑒 ∈ 𝑇 ∧ 𝑥 ∈ 𝑒 ) → 𝑒 ⊆ ℝ ) |
33 |
|
simpr |
⊢ ( ( 𝑒 ∈ 𝑇 ∧ 𝑥 ∈ 𝑒 ) → 𝑥 ∈ 𝑒 ) |
34 |
32 33
|
sseldd |
⊢ ( ( 𝑒 ∈ 𝑇 ∧ 𝑥 ∈ 𝑒 ) → 𝑥 ∈ ℝ ) |
35 |
34
|
ex |
⊢ ( 𝑒 ∈ 𝑇 → ( 𝑥 ∈ 𝑒 → 𝑥 ∈ ℝ ) ) |
36 |
35
|
a1i |
⊢ ( 𝑥 ∈ ∪ 𝑇 → ( 𝑒 ∈ 𝑇 → ( 𝑥 ∈ 𝑒 → 𝑥 ∈ ℝ ) ) ) |
37 |
24 25 36
|
rexlimd |
⊢ ( 𝑥 ∈ ∪ 𝑇 → ( ∃ 𝑒 ∈ 𝑇 𝑥 ∈ 𝑒 → 𝑥 ∈ ℝ ) ) |
38 |
22 37
|
mpd |
⊢ ( 𝑥 ∈ ∪ 𝑇 → 𝑥 ∈ ℝ ) |
39 |
38
|
rgen |
⊢ ∀ 𝑥 ∈ ∪ 𝑇 𝑥 ∈ ℝ |
40 |
|
dfss3 |
⊢ ( ∪ 𝑇 ⊆ ℝ ↔ ∀ 𝑥 ∈ ∪ 𝑇 𝑥 ∈ ℝ ) |
41 |
39 40
|
mpbir |
⊢ ∪ 𝑇 ⊆ ℝ |
42 |
41
|
a1i |
⊢ ( 𝜑 → ∪ 𝑇 ⊆ ℝ ) |
43 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
44 |
4
|
eqcomi |
⊢ ( topGen ‘ ran (,) ) = 𝐽 |
45 |
44
|
unieqi |
⊢ ∪ ( topGen ‘ ran (,) ) = ∪ 𝐽 |
46 |
43 45
|
eqtr2i |
⊢ ∪ 𝐽 = ℝ |
47 |
46
|
a1i |
⊢ ( 𝜑 → ∪ 𝐽 = ℝ ) |
48 |
47
|
eqcomd |
⊢ ( 𝜑 → ℝ = ∪ 𝐽 ) |
49 |
17
|
unissd |
⊢ ( 𝜑 → ∪ 𝐽 ⊆ ∪ 𝑇 ) |
50 |
48 49
|
eqsstrd |
⊢ ( 𝜑 → ℝ ⊆ ∪ 𝑇 ) |
51 |
42 50
|
eqssd |
⊢ ( 𝜑 → ∪ 𝑇 = ℝ ) |
52 |
51 47
|
eqtr4d |
⊢ ( 𝜑 → ∪ 𝑇 = ∪ 𝐽 ) |
53 |
11 5 12 17 52
|
salgenss |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑇 ) |
54 |
53 6
|
sseldd |
⊢ ( 𝜑 → 𝐸 ∈ 𝑇 ) |
55 |
|
imaeq2 |
⊢ ( 𝑒 = 𝐸 → ( ◡ 𝐹 “ 𝑒 ) = ( ◡ 𝐹 “ 𝐸 ) ) |
56 |
55
|
eleq1d |
⊢ ( 𝑒 = 𝐸 → ( ( ◡ 𝐹 “ 𝑒 ) ∈ ( 𝑆 ↾t 𝐷 ) ↔ ( ◡ 𝐹 “ 𝐸 ) ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
57 |
56 8
|
elrab2 |
⊢ ( 𝐸 ∈ 𝑇 ↔ ( 𝐸 ∈ 𝒫 ℝ ∧ ( ◡ 𝐹 “ 𝐸 ) ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
58 |
54 57
|
sylib |
⊢ ( 𝜑 → ( 𝐸 ∈ 𝒫 ℝ ∧ ( ◡ 𝐹 “ 𝐸 ) ∈ ( 𝑆 ↾t 𝐷 ) ) ) |
59 |
58
|
simprd |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝐸 ) ∈ ( 𝑆 ↾t 𝐷 ) ) |
60 |
7 59
|
eqeltrid |
⊢ ( 𝜑 → 𝑃 ∈ ( 𝑆 ↾t 𝐷 ) ) |