Metamath Proof Explorer


Theorem smfpimbor1lem2

Description: Given a sigma-measurable function, the preimage of a Borel set belongs to the subspace sigma-algebra induced by the domain of the function. Proposition 121E (f) of Fremlin1 p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpimbor1lem2.s ( 𝜑𝑆 ∈ SAlg )
smfpimbor1lem2.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
smfpimbor1lem2.a 𝐷 = dom 𝐹
smfpimbor1lem2.j 𝐽 = ( topGen ‘ ran (,) )
smfpimbor1lem2.b 𝐵 = ( SalGen ‘ 𝐽 )
smfpimbor1lem2.e ( 𝜑𝐸𝐵 )
smfpimbor1lem2.p 𝑃 = ( 𝐹𝐸 )
smfpimbor1lem2.t 𝑇 = { 𝑒 ∈ 𝒫 ℝ ∣ ( 𝐹𝑒 ) ∈ ( 𝑆t 𝐷 ) }
Assertion smfpimbor1lem2 ( 𝜑𝑃 ∈ ( 𝑆t 𝐷 ) )

Proof

Step Hyp Ref Expression
1 smfpimbor1lem2.s ( 𝜑𝑆 ∈ SAlg )
2 smfpimbor1lem2.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
3 smfpimbor1lem2.a 𝐷 = dom 𝐹
4 smfpimbor1lem2.j 𝐽 = ( topGen ‘ ran (,) )
5 smfpimbor1lem2.b 𝐵 = ( SalGen ‘ 𝐽 )
6 smfpimbor1lem2.e ( 𝜑𝐸𝐵 )
7 smfpimbor1lem2.p 𝑃 = ( 𝐹𝐸 )
8 smfpimbor1lem2.t 𝑇 = { 𝑒 ∈ 𝒫 ℝ ∣ ( 𝐹𝑒 ) ∈ ( 𝑆t 𝐷 ) }
9 retop ( topGen ‘ ran (,) ) ∈ Top
10 4 9 eqeltri 𝐽 ∈ Top
11 10 a1i ( 𝜑𝐽 ∈ Top )
12 1 2 3 8 smfresal ( 𝜑𝑇 ∈ SAlg )
13 1 adantr ( ( 𝜑𝑥𝐽 ) → 𝑆 ∈ SAlg )
14 2 adantr ( ( 𝜑𝑥𝐽 ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
15 simpr ( ( 𝜑𝑥𝐽 ) → 𝑥𝐽 )
16 13 14 3 4 15 8 smfpimbor1lem1 ( ( 𝜑𝑥𝐽 ) → 𝑥𝑇 )
17 16 ssd ( 𝜑𝐽𝑇 )
18 nfcv 𝑒 𝑥
19 nfrab1 𝑒 { 𝑒 ∈ 𝒫 ℝ ∣ ( 𝐹𝑒 ) ∈ ( 𝑆t 𝐷 ) }
20 8 19 nfcxfr 𝑒 𝑇
21 18 20 eluni2f ( 𝑥 𝑇 ↔ ∃ 𝑒𝑇 𝑥𝑒 )
22 21 biimpi ( 𝑥 𝑇 → ∃ 𝑒𝑇 𝑥𝑒 )
23 20 nfuni 𝑒 𝑇
24 18 23 nfel 𝑒 𝑥 𝑇
25 nfv 𝑒 𝑥 ∈ ℝ
26 8 eleq2i ( 𝑒𝑇𝑒 ∈ { 𝑒 ∈ 𝒫 ℝ ∣ ( 𝐹𝑒 ) ∈ ( 𝑆t 𝐷 ) } )
27 26 biimpi ( 𝑒𝑇𝑒 ∈ { 𝑒 ∈ 𝒫 ℝ ∣ ( 𝐹𝑒 ) ∈ ( 𝑆t 𝐷 ) } )
28 rabidim1 ( 𝑒 ∈ { 𝑒 ∈ 𝒫 ℝ ∣ ( 𝐹𝑒 ) ∈ ( 𝑆t 𝐷 ) } → 𝑒 ∈ 𝒫 ℝ )
29 27 28 syl ( 𝑒𝑇𝑒 ∈ 𝒫 ℝ )
30 elpwi ( 𝑒 ∈ 𝒫 ℝ → 𝑒 ⊆ ℝ )
31 29 30 syl ( 𝑒𝑇𝑒 ⊆ ℝ )
32 31 adantr ( ( 𝑒𝑇𝑥𝑒 ) → 𝑒 ⊆ ℝ )
33 simpr ( ( 𝑒𝑇𝑥𝑒 ) → 𝑥𝑒 )
34 32 33 sseldd ( ( 𝑒𝑇𝑥𝑒 ) → 𝑥 ∈ ℝ )
35 34 ex ( 𝑒𝑇 → ( 𝑥𝑒𝑥 ∈ ℝ ) )
36 35 a1i ( 𝑥 𝑇 → ( 𝑒𝑇 → ( 𝑥𝑒𝑥 ∈ ℝ ) ) )
37 24 25 36 rexlimd ( 𝑥 𝑇 → ( ∃ 𝑒𝑇 𝑥𝑒𝑥 ∈ ℝ ) )
38 22 37 mpd ( 𝑥 𝑇𝑥 ∈ ℝ )
39 38 rgen 𝑥 𝑇 𝑥 ∈ ℝ
40 dfss3 ( 𝑇 ⊆ ℝ ↔ ∀ 𝑥 𝑇 𝑥 ∈ ℝ )
41 39 40 mpbir 𝑇 ⊆ ℝ
42 41 a1i ( 𝜑 𝑇 ⊆ ℝ )
43 uniretop ℝ = ( topGen ‘ ran (,) )
44 4 eqcomi ( topGen ‘ ran (,) ) = 𝐽
45 44 unieqi ( topGen ‘ ran (,) ) = 𝐽
46 43 45 eqtr2i 𝐽 = ℝ
47 46 a1i ( 𝜑 𝐽 = ℝ )
48 47 eqcomd ( 𝜑 → ℝ = 𝐽 )
49 17 unissd ( 𝜑 𝐽 𝑇 )
50 48 49 eqsstrd ( 𝜑 → ℝ ⊆ 𝑇 )
51 42 50 eqssd ( 𝜑 𝑇 = ℝ )
52 51 47 eqtr4d ( 𝜑 𝑇 = 𝐽 )
53 11 5 12 17 52 salgenss ( 𝜑𝐵𝑇 )
54 53 6 sseldd ( 𝜑𝐸𝑇 )
55 imaeq2 ( 𝑒 = 𝐸 → ( 𝐹𝑒 ) = ( 𝐹𝐸 ) )
56 55 eleq1d ( 𝑒 = 𝐸 → ( ( 𝐹𝑒 ) ∈ ( 𝑆t 𝐷 ) ↔ ( 𝐹𝐸 ) ∈ ( 𝑆t 𝐷 ) ) )
57 56 8 elrab2 ( 𝐸𝑇 ↔ ( 𝐸 ∈ 𝒫 ℝ ∧ ( 𝐹𝐸 ) ∈ ( 𝑆t 𝐷 ) ) )
58 54 57 sylib ( 𝜑 → ( 𝐸 ∈ 𝒫 ℝ ∧ ( 𝐹𝐸 ) ∈ ( 𝑆t 𝐷 ) ) )
59 58 simprd ( 𝜑 → ( 𝐹𝐸 ) ∈ ( 𝑆t 𝐷 ) )
60 7 59 eqeltrid ( 𝜑𝑃 ∈ ( 𝑆t 𝐷 ) )