| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smfpimbor1lem2.s | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 2 |  | smfpimbor1lem2.f | ⊢ ( 𝜑  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 3 |  | smfpimbor1lem2.a | ⊢ 𝐷  =  dom  𝐹 | 
						
							| 4 |  | smfpimbor1lem2.j | ⊢ 𝐽  =  ( topGen ‘ ran  (,) ) | 
						
							| 5 |  | smfpimbor1lem2.b | ⊢ 𝐵  =  ( SalGen ‘ 𝐽 ) | 
						
							| 6 |  | smfpimbor1lem2.e | ⊢ ( 𝜑  →  𝐸  ∈  𝐵 ) | 
						
							| 7 |  | smfpimbor1lem2.p | ⊢ 𝑃  =  ( ◡ 𝐹  “  𝐸 ) | 
						
							| 8 |  | smfpimbor1lem2.t | ⊢ 𝑇  =  { 𝑒  ∈  𝒫  ℝ  ∣  ( ◡ 𝐹  “  𝑒 )  ∈  ( 𝑆  ↾t  𝐷 ) } | 
						
							| 9 |  | retop | ⊢ ( topGen ‘ ran  (,) )  ∈  Top | 
						
							| 10 | 4 9 | eqeltri | ⊢ 𝐽  ∈  Top | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 12 | 1 2 3 8 | smfresal | ⊢ ( 𝜑  →  𝑇  ∈  SAlg ) | 
						
							| 13 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐽 )  →  𝑆  ∈  SAlg ) | 
						
							| 14 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐽 )  →  𝐹  ∈  ( SMblFn ‘ 𝑆 ) ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐽 )  →  𝑥  ∈  𝐽 ) | 
						
							| 16 | 13 14 3 4 15 8 | smfpimbor1lem1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐽 )  →  𝑥  ∈  𝑇 ) | 
						
							| 17 | 16 | ssd | ⊢ ( 𝜑  →  𝐽  ⊆  𝑇 ) | 
						
							| 18 |  | nfcv | ⊢ Ⅎ 𝑒 𝑥 | 
						
							| 19 |  | nfrab1 | ⊢ Ⅎ 𝑒 { 𝑒  ∈  𝒫  ℝ  ∣  ( ◡ 𝐹  “  𝑒 )  ∈  ( 𝑆  ↾t  𝐷 ) } | 
						
							| 20 | 8 19 | nfcxfr | ⊢ Ⅎ 𝑒 𝑇 | 
						
							| 21 | 18 20 | eluni2f | ⊢ ( 𝑥  ∈  ∪  𝑇  ↔  ∃ 𝑒  ∈  𝑇 𝑥  ∈  𝑒 ) | 
						
							| 22 | 21 | biimpi | ⊢ ( 𝑥  ∈  ∪  𝑇  →  ∃ 𝑒  ∈  𝑇 𝑥  ∈  𝑒 ) | 
						
							| 23 | 20 | nfuni | ⊢ Ⅎ 𝑒 ∪  𝑇 | 
						
							| 24 | 18 23 | nfel | ⊢ Ⅎ 𝑒 𝑥  ∈  ∪  𝑇 | 
						
							| 25 |  | nfv | ⊢ Ⅎ 𝑒 𝑥  ∈  ℝ | 
						
							| 26 | 8 | eleq2i | ⊢ ( 𝑒  ∈  𝑇  ↔  𝑒  ∈  { 𝑒  ∈  𝒫  ℝ  ∣  ( ◡ 𝐹  “  𝑒 )  ∈  ( 𝑆  ↾t  𝐷 ) } ) | 
						
							| 27 | 26 | biimpi | ⊢ ( 𝑒  ∈  𝑇  →  𝑒  ∈  { 𝑒  ∈  𝒫  ℝ  ∣  ( ◡ 𝐹  “  𝑒 )  ∈  ( 𝑆  ↾t  𝐷 ) } ) | 
						
							| 28 |  | rabidim1 | ⊢ ( 𝑒  ∈  { 𝑒  ∈  𝒫  ℝ  ∣  ( ◡ 𝐹  “  𝑒 )  ∈  ( 𝑆  ↾t  𝐷 ) }  →  𝑒  ∈  𝒫  ℝ ) | 
						
							| 29 | 27 28 | syl | ⊢ ( 𝑒  ∈  𝑇  →  𝑒  ∈  𝒫  ℝ ) | 
						
							| 30 |  | elpwi | ⊢ ( 𝑒  ∈  𝒫  ℝ  →  𝑒  ⊆  ℝ ) | 
						
							| 31 | 29 30 | syl | ⊢ ( 𝑒  ∈  𝑇  →  𝑒  ⊆  ℝ ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝑒  ∈  𝑇  ∧  𝑥  ∈  𝑒 )  →  𝑒  ⊆  ℝ ) | 
						
							| 33 |  | simpr | ⊢ ( ( 𝑒  ∈  𝑇  ∧  𝑥  ∈  𝑒 )  →  𝑥  ∈  𝑒 ) | 
						
							| 34 | 32 33 | sseldd | ⊢ ( ( 𝑒  ∈  𝑇  ∧  𝑥  ∈  𝑒 )  →  𝑥  ∈  ℝ ) | 
						
							| 35 | 34 | ex | ⊢ ( 𝑒  ∈  𝑇  →  ( 𝑥  ∈  𝑒  →  𝑥  ∈  ℝ ) ) | 
						
							| 36 | 35 | a1i | ⊢ ( 𝑥  ∈  ∪  𝑇  →  ( 𝑒  ∈  𝑇  →  ( 𝑥  ∈  𝑒  →  𝑥  ∈  ℝ ) ) ) | 
						
							| 37 | 24 25 36 | rexlimd | ⊢ ( 𝑥  ∈  ∪  𝑇  →  ( ∃ 𝑒  ∈  𝑇 𝑥  ∈  𝑒  →  𝑥  ∈  ℝ ) ) | 
						
							| 38 | 22 37 | mpd | ⊢ ( 𝑥  ∈  ∪  𝑇  →  𝑥  ∈  ℝ ) | 
						
							| 39 | 38 | rgen | ⊢ ∀ 𝑥  ∈  ∪  𝑇 𝑥  ∈  ℝ | 
						
							| 40 |  | dfss3 | ⊢ ( ∪  𝑇  ⊆  ℝ  ↔  ∀ 𝑥  ∈  ∪  𝑇 𝑥  ∈  ℝ ) | 
						
							| 41 | 39 40 | mpbir | ⊢ ∪  𝑇  ⊆  ℝ | 
						
							| 42 | 41 | a1i | ⊢ ( 𝜑  →  ∪  𝑇  ⊆  ℝ ) | 
						
							| 43 |  | uniretop | ⊢ ℝ  =  ∪  ( topGen ‘ ran  (,) ) | 
						
							| 44 | 4 | eqcomi | ⊢ ( topGen ‘ ran  (,) )  =  𝐽 | 
						
							| 45 | 44 | unieqi | ⊢ ∪  ( topGen ‘ ran  (,) )  =  ∪  𝐽 | 
						
							| 46 | 43 45 | eqtr2i | ⊢ ∪  𝐽  =  ℝ | 
						
							| 47 | 46 | a1i | ⊢ ( 𝜑  →  ∪  𝐽  =  ℝ ) | 
						
							| 48 | 47 | eqcomd | ⊢ ( 𝜑  →  ℝ  =  ∪  𝐽 ) | 
						
							| 49 | 17 | unissd | ⊢ ( 𝜑  →  ∪  𝐽  ⊆  ∪  𝑇 ) | 
						
							| 50 | 48 49 | eqsstrd | ⊢ ( 𝜑  →  ℝ  ⊆  ∪  𝑇 ) | 
						
							| 51 | 42 50 | eqssd | ⊢ ( 𝜑  →  ∪  𝑇  =  ℝ ) | 
						
							| 52 | 51 47 | eqtr4d | ⊢ ( 𝜑  →  ∪  𝑇  =  ∪  𝐽 ) | 
						
							| 53 | 11 5 12 17 52 | salgenss | ⊢ ( 𝜑  →  𝐵  ⊆  𝑇 ) | 
						
							| 54 | 53 6 | sseldd | ⊢ ( 𝜑  →  𝐸  ∈  𝑇 ) | 
						
							| 55 |  | imaeq2 | ⊢ ( 𝑒  =  𝐸  →  ( ◡ 𝐹  “  𝑒 )  =  ( ◡ 𝐹  “  𝐸 ) ) | 
						
							| 56 | 55 | eleq1d | ⊢ ( 𝑒  =  𝐸  →  ( ( ◡ 𝐹  “  𝑒 )  ∈  ( 𝑆  ↾t  𝐷 )  ↔  ( ◡ 𝐹  “  𝐸 )  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 57 | 56 8 | elrab2 | ⊢ ( 𝐸  ∈  𝑇  ↔  ( 𝐸  ∈  𝒫  ℝ  ∧  ( ◡ 𝐹  “  𝐸 )  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 58 | 54 57 | sylib | ⊢ ( 𝜑  →  ( 𝐸  ∈  𝒫  ℝ  ∧  ( ◡ 𝐹  “  𝐸 )  ∈  ( 𝑆  ↾t  𝐷 ) ) ) | 
						
							| 59 | 58 | simprd | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  𝐸 )  ∈  ( 𝑆  ↾t  𝐷 ) ) | 
						
							| 60 | 7 59 | eqeltrid | ⊢ ( 𝜑  →  𝑃  ∈  ( 𝑆  ↾t  𝐷 ) ) |