Metamath Proof Explorer


Theorem smfpimbor1lem1

Description: Every open set belongs to T . This is the second step in the proof of Proposition 121E (f) of Fremlin1 p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfpimbor1lem1.s ( 𝜑𝑆 ∈ SAlg )
smfpimbor1lem1.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
smfpimbor1lem1.a 𝐷 = dom 𝐹
smfpimbor1lem1.j 𝐽 = ( topGen ‘ ran (,) )
smfpimbor1lem1.8 ( 𝜑𝐺𝐽 )
smfpimbor1lem1.t 𝑇 = { 𝑒 ∈ 𝒫 ℝ ∣ ( 𝐹𝑒 ) ∈ ( 𝑆t 𝐷 ) }
Assertion smfpimbor1lem1 ( 𝜑𝐺𝑇 )

Proof

Step Hyp Ref Expression
1 smfpimbor1lem1.s ( 𝜑𝑆 ∈ SAlg )
2 smfpimbor1lem1.f ( 𝜑𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
3 smfpimbor1lem1.a 𝐷 = dom 𝐹
4 smfpimbor1lem1.j 𝐽 = ( topGen ‘ ran (,) )
5 smfpimbor1lem1.8 ( 𝜑𝐺𝐽 )
6 smfpimbor1lem1.t 𝑇 = { 𝑒 ∈ 𝒫 ℝ ∣ ( 𝐹𝑒 ) ∈ ( 𝑆t 𝐷 ) }
7 4 5 tgqioo2 ( 𝜑 → ∃ 𝑞 ( 𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) ∧ 𝐺 = 𝑞 ) )
8 simprr ( ( 𝜑 ∧ ( 𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) ∧ 𝐺 = 𝑞 ) ) → 𝐺 = 𝑞 )
9 1 2 3 6 smfresal ( 𝜑𝑇 ∈ SAlg )
10 9 adantr ( ( 𝜑𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) ) → 𝑇 ∈ SAlg )
11 iooex (,) ∈ V
12 11 imaexi ( (,) “ ( ℚ × ℚ ) ) ∈ V
13 12 a1i ( 𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) → ( (,) “ ( ℚ × ℚ ) ) ∈ V )
14 id ( 𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) → 𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) )
15 13 14 ssexd ( 𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) → 𝑞 ∈ V )
16 15 adantl ( ( 𝜑𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) ) → 𝑞 ∈ V )
17 simpr ( ( 𝜑𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) ) → 𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) )
18 ioofun Fun (,)
19 18 a1i ( 𝑞 ∈ ( (,) “ ( ℚ × ℚ ) ) → Fun (,) )
20 id ( 𝑞 ∈ ( (,) “ ( ℚ × ℚ ) ) → 𝑞 ∈ ( (,) “ ( ℚ × ℚ ) ) )
21 fvelima ( ( Fun (,) ∧ 𝑞 ∈ ( (,) “ ( ℚ × ℚ ) ) ) → ∃ 𝑝 ∈ ( ℚ × ℚ ) ( (,) ‘ 𝑝 ) = 𝑞 )
22 19 20 21 syl2anc ( 𝑞 ∈ ( (,) “ ( ℚ × ℚ ) ) → ∃ 𝑝 ∈ ( ℚ × ℚ ) ( (,) ‘ 𝑝 ) = 𝑞 )
23 22 adantl ( ( 𝜑𝑞 ∈ ( (,) “ ( ℚ × ℚ ) ) ) → ∃ 𝑝 ∈ ( ℚ × ℚ ) ( (,) ‘ 𝑝 ) = 𝑞 )
24 id ( ( (,) ‘ 𝑝 ) = 𝑞 → ( (,) ‘ 𝑝 ) = 𝑞 )
25 24 eqcomd ( ( (,) ‘ 𝑝 ) = 𝑞𝑞 = ( (,) ‘ 𝑝 ) )
26 25 adantl ( ( 𝑝 ∈ ( ℚ × ℚ ) ∧ ( (,) ‘ 𝑝 ) = 𝑞 ) → 𝑞 = ( (,) ‘ 𝑝 ) )
27 1st2nd2 ( 𝑝 ∈ ( ℚ × ℚ ) → 𝑝 = ⟨ ( 1st𝑝 ) , ( 2nd𝑝 ) ⟩ )
28 27 fveq2d ( 𝑝 ∈ ( ℚ × ℚ ) → ( (,) ‘ 𝑝 ) = ( (,) ‘ ⟨ ( 1st𝑝 ) , ( 2nd𝑝 ) ⟩ ) )
29 df-ov ( ( 1st𝑝 ) (,) ( 2nd𝑝 ) ) = ( (,) ‘ ⟨ ( 1st𝑝 ) , ( 2nd𝑝 ) ⟩ )
30 29 eqcomi ( (,) ‘ ⟨ ( 1st𝑝 ) , ( 2nd𝑝 ) ⟩ ) = ( ( 1st𝑝 ) (,) ( 2nd𝑝 ) )
31 30 a1i ( 𝑝 ∈ ( ℚ × ℚ ) → ( (,) ‘ ⟨ ( 1st𝑝 ) , ( 2nd𝑝 ) ⟩ ) = ( ( 1st𝑝 ) (,) ( 2nd𝑝 ) ) )
32 28 31 eqtrd ( 𝑝 ∈ ( ℚ × ℚ ) → ( (,) ‘ 𝑝 ) = ( ( 1st𝑝 ) (,) ( 2nd𝑝 ) ) )
33 32 adantr ( ( 𝑝 ∈ ( ℚ × ℚ ) ∧ ( (,) ‘ 𝑝 ) = 𝑞 ) → ( (,) ‘ 𝑝 ) = ( ( 1st𝑝 ) (,) ( 2nd𝑝 ) ) )
34 26 33 eqtrd ( ( 𝑝 ∈ ( ℚ × ℚ ) ∧ ( (,) ‘ 𝑝 ) = 𝑞 ) → 𝑞 = ( ( 1st𝑝 ) (,) ( 2nd𝑝 ) ) )
35 34 3adant1 ( ( 𝜑𝑝 ∈ ( ℚ × ℚ ) ∧ ( (,) ‘ 𝑝 ) = 𝑞 ) → 𝑞 = ( ( 1st𝑝 ) (,) ( 2nd𝑝 ) ) )
36 ioossre ( ( 1st𝑝 ) (,) ( 2nd𝑝 ) ) ⊆ ℝ
37 ovex ( ( 1st𝑝 ) (,) ( 2nd𝑝 ) ) ∈ V
38 37 elpw ( ( ( 1st𝑝 ) (,) ( 2nd𝑝 ) ) ∈ 𝒫 ℝ ↔ ( ( 1st𝑝 ) (,) ( 2nd𝑝 ) ) ⊆ ℝ )
39 36 38 mpbir ( ( 1st𝑝 ) (,) ( 2nd𝑝 ) ) ∈ 𝒫 ℝ
40 39 a1i ( ( 𝜑𝑝 ∈ ( ℚ × ℚ ) ) → ( ( 1st𝑝 ) (,) ( 2nd𝑝 ) ) ∈ 𝒫 ℝ )
41 1 adantr ( ( 𝜑𝑝 ∈ ( ℚ × ℚ ) ) → 𝑆 ∈ SAlg )
42 2 adantr ( ( 𝜑𝑝 ∈ ( ℚ × ℚ ) ) → 𝐹 ∈ ( SMblFn ‘ 𝑆 ) )
43 xp1st ( 𝑝 ∈ ( ℚ × ℚ ) → ( 1st𝑝 ) ∈ ℚ )
44 43 qred ( 𝑝 ∈ ( ℚ × ℚ ) → ( 1st𝑝 ) ∈ ℝ )
45 44 rexrd ( 𝑝 ∈ ( ℚ × ℚ ) → ( 1st𝑝 ) ∈ ℝ* )
46 45 adantl ( ( 𝜑𝑝 ∈ ( ℚ × ℚ ) ) → ( 1st𝑝 ) ∈ ℝ* )
47 xp2nd ( 𝑝 ∈ ( ℚ × ℚ ) → ( 2nd𝑝 ) ∈ ℚ )
48 47 qred ( 𝑝 ∈ ( ℚ × ℚ ) → ( 2nd𝑝 ) ∈ ℝ )
49 48 rexrd ( 𝑝 ∈ ( ℚ × ℚ ) → ( 2nd𝑝 ) ∈ ℝ* )
50 49 adantl ( ( 𝜑𝑝 ∈ ( ℚ × ℚ ) ) → ( 2nd𝑝 ) ∈ ℝ* )
51 41 42 3 46 50 smfpimioo ( ( 𝜑𝑝 ∈ ( ℚ × ℚ ) ) → ( 𝐹 “ ( ( 1st𝑝 ) (,) ( 2nd𝑝 ) ) ) ∈ ( 𝑆t 𝐷 ) )
52 40 51 jca ( ( 𝜑𝑝 ∈ ( ℚ × ℚ ) ) → ( ( ( 1st𝑝 ) (,) ( 2nd𝑝 ) ) ∈ 𝒫 ℝ ∧ ( 𝐹 “ ( ( 1st𝑝 ) (,) ( 2nd𝑝 ) ) ) ∈ ( 𝑆t 𝐷 ) ) )
53 imaeq2 ( 𝑒 = ( ( 1st𝑝 ) (,) ( 2nd𝑝 ) ) → ( 𝐹𝑒 ) = ( 𝐹 “ ( ( 1st𝑝 ) (,) ( 2nd𝑝 ) ) ) )
54 53 eleq1d ( 𝑒 = ( ( 1st𝑝 ) (,) ( 2nd𝑝 ) ) → ( ( 𝐹𝑒 ) ∈ ( 𝑆t 𝐷 ) ↔ ( 𝐹 “ ( ( 1st𝑝 ) (,) ( 2nd𝑝 ) ) ) ∈ ( 𝑆t 𝐷 ) ) )
55 54 6 elrab2 ( ( ( 1st𝑝 ) (,) ( 2nd𝑝 ) ) ∈ 𝑇 ↔ ( ( ( 1st𝑝 ) (,) ( 2nd𝑝 ) ) ∈ 𝒫 ℝ ∧ ( 𝐹 “ ( ( 1st𝑝 ) (,) ( 2nd𝑝 ) ) ) ∈ ( 𝑆t 𝐷 ) ) )
56 52 55 sylibr ( ( 𝜑𝑝 ∈ ( ℚ × ℚ ) ) → ( ( 1st𝑝 ) (,) ( 2nd𝑝 ) ) ∈ 𝑇 )
57 56 3adant3 ( ( 𝜑𝑝 ∈ ( ℚ × ℚ ) ∧ ( (,) ‘ 𝑝 ) = 𝑞 ) → ( ( 1st𝑝 ) (,) ( 2nd𝑝 ) ) ∈ 𝑇 )
58 35 57 eqeltrd ( ( 𝜑𝑝 ∈ ( ℚ × ℚ ) ∧ ( (,) ‘ 𝑝 ) = 𝑞 ) → 𝑞𝑇 )
59 58 3exp ( 𝜑 → ( 𝑝 ∈ ( ℚ × ℚ ) → ( ( (,) ‘ 𝑝 ) = 𝑞𝑞𝑇 ) ) )
60 59 rexlimdv ( 𝜑 → ( ∃ 𝑝 ∈ ( ℚ × ℚ ) ( (,) ‘ 𝑝 ) = 𝑞𝑞𝑇 ) )
61 60 adantr ( ( 𝜑𝑞 ∈ ( (,) “ ( ℚ × ℚ ) ) ) → ( ∃ 𝑝 ∈ ( ℚ × ℚ ) ( (,) ‘ 𝑝 ) = 𝑞𝑞𝑇 ) )
62 23 61 mpd ( ( 𝜑𝑞 ∈ ( (,) “ ( ℚ × ℚ ) ) ) → 𝑞𝑇 )
63 62 ssd ( 𝜑 → ( (,) “ ( ℚ × ℚ ) ) ⊆ 𝑇 )
64 63 adantr ( ( 𝜑𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) ) → ( (,) “ ( ℚ × ℚ ) ) ⊆ 𝑇 )
65 17 64 sstrd ( ( 𝜑𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) ) → 𝑞𝑇 )
66 16 65 elpwd ( ( 𝜑𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) ) → 𝑞 ∈ 𝒫 𝑇 )
67 ssdomg ( ( (,) “ ( ℚ × ℚ ) ) ∈ V → ( 𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) → 𝑞 ≼ ( (,) “ ( ℚ × ℚ ) ) ) )
68 12 67 ax-mp ( 𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) → 𝑞 ≼ ( (,) “ ( ℚ × ℚ ) ) )
69 qct ℚ ≼ ω
70 69 69 pm3.2i ( ℚ ≼ ω ∧ ℚ ≼ ω )
71 xpct ( ( ℚ ≼ ω ∧ ℚ ≼ ω ) → ( ℚ × ℚ ) ≼ ω )
72 70 71 ax-mp ( ℚ × ℚ ) ≼ ω
73 fimact ( ( ( ℚ × ℚ ) ≼ ω ∧ Fun (,) ) → ( (,) “ ( ℚ × ℚ ) ) ≼ ω )
74 72 18 73 mp2an ( (,) “ ( ℚ × ℚ ) ) ≼ ω
75 74 a1i ( 𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) → ( (,) “ ( ℚ × ℚ ) ) ≼ ω )
76 domtr ( ( 𝑞 ≼ ( (,) “ ( ℚ × ℚ ) ) ∧ ( (,) “ ( ℚ × ℚ ) ) ≼ ω ) → 𝑞 ≼ ω )
77 68 75 76 syl2anc ( 𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) → 𝑞 ≼ ω )
78 77 adantl ( ( 𝜑𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) ) → 𝑞 ≼ ω )
79 10 66 78 salunicl ( ( 𝜑𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) ) → 𝑞𝑇 )
80 79 adantrr ( ( 𝜑 ∧ ( 𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) ∧ 𝐺 = 𝑞 ) ) → 𝑞𝑇 )
81 8 80 eqeltrd ( ( 𝜑 ∧ ( 𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) ∧ 𝐺 = 𝑞 ) ) → 𝐺𝑇 )
82 81 ex ( 𝜑 → ( ( 𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) ∧ 𝐺 = 𝑞 ) → 𝐺𝑇 ) )
83 82 exlimdv ( 𝜑 → ( ∃ 𝑞 ( 𝑞 ⊆ ( (,) “ ( ℚ × ℚ ) ) ∧ 𝐺 = 𝑞 ) → 𝐺𝑇 ) )
84 7 83 mpd ( 𝜑𝐺𝑇 )